記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對(duì)任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
(1)判斷函數(shù)f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)設(shè)函數(shù)f(x)=loga(1-ax),求f(x)的反函數(shù)f-1(x),并判斷f(x)是否是M的元素;
(3)若f(x)≠x,寫出f(x)∈M的條件,并寫出兩個(gè)不同于(1)、(2)中的函數(shù).

解:(1)∵對(duì)任意x∈R,f(f(x))=-(-x+1)+1=x,
∴f(x)=-x+1∈M--
∵g(g(x))=2(2x-1)-1=4x-3不恒等于x,
∴g(x)∉M
(2)設(shè)y=,
①a>1時(shí),由0<1-ax<1解得:x<0,y<0;
由y=
解得其反函數(shù)為y=,(x<0)
②0<a<1時(shí),由0<1-ax<1解得:x>0,y>0
解得函數(shù)y=的反函數(shù)為y=,(x>0)
∵f(f(x))===x
∴f(x)=∈M
(3)f(x)≠x,f(x)∈M的條件是:f(x)存在反函數(shù)f-1(x),且f-1(x)=f(x)
函數(shù)f(x)可以是:f(x)=(ab≠0,ac≠-b2);
f(x)=(k≠0);
f(x)=(a>0,x∈[0,]);
f(x)=(a>0,a≠1);
f(x)=sin(arccosx),(x∈[0,1]或x∈[-1,0]),f(x)=cos(arcsinx);
f(x)=arcsin(cosx),(x∈[0,]或x∈[,π]),f(x)=arccos(sinx).
以“;”劃分為不同類型的函數(shù),評(píng)分標(biāo)準(zhǔn)如下:
給出函數(shù)是以上函數(shù)中兩個(gè)不同類型的函數(shù)得.屬于以上同一類型的兩個(gè)函數(shù)得;
寫出的是與(1)、(2)中函數(shù)同類型的不得分;函數(shù)定義域或條件錯(cuò)誤扣.
分析:(1)依題意,可求得f(f(x))=x,g(g(x))=4x-3,從而可作出判斷;
(2)由y=,a>1時(shí)可求得其反函數(shù)為y=(x<0),0<a<1時(shí),反函數(shù)為y=(x>0),可求得f(f(x))=x,從而可判斷f(x)是否是M的元素;
(3)f(x)≠x,f(x)∈M的條件是:f(x)存在反函數(shù)f-1(x),且f-1(x)=f(x),舉例即可.
點(diǎn)評(píng):本題考查對(duì)數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用,考查反函數(shù),考查抽象思維與綜合分析與應(yīng)用的能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•浦東新區(qū)二模)記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對(duì)任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
(1)判斷函數(shù)f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)設(shè)函數(shù)f(x)=log2(1-2x),求f(x)的反函數(shù)f-1(x),并判斷f(x)是否是M的元素;
(3)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對(duì)任意的x∈S,f2(x)=x,則稱f(x)是集合M的元素,例如f(x)=-x+1,對(duì)任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)設(shè)函數(shù)f(x)=log2(1-2x),判斷f(x)是否是M的元素;
(2)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對(duì)任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素,
例如f(x)=-x+1,對(duì)任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)設(shè)函數(shù)f(x)=log2(1-2x),判斷f(x)是否是M的元素,并求f(x)的反函數(shù)f-1(x);
(2)f(x)=
axx+b
∈M
(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對(duì)任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
(1)判斷函數(shù)f(x)=-x=1,lg(x)=2x-1是否是M的元素;
(2)設(shè)函數(shù)f(x)=loga(1-ax),求f(x)的反函數(shù)f-1(x),并判斷f(x)是否是M的元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•浦東新區(qū)二模)記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對(duì)任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
(1)判斷函數(shù)f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)設(shè)函數(shù)f(x)=loga(1-ax),求f(x)的反函數(shù)f-1(x),并判斷f(x)是否是M的元素;
(3)若f(x)≠x,寫出f(x)∈M的條件,并寫出兩個(gè)不同于(1)、(2)中的函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案