【題目】地球海洋面積遠(yuǎn)遠(yuǎn)大于陸地面積,隨著社會的發(fā)展,科技的進(jìn)步,人類發(fā)現(xiàn)海洋不僅擁有巨大的經(jīng)濟(jì)利益,還擁有著深遠(yuǎn)的政治利益.聯(lián)合國于第63屆聯(lián)合國大會上將每年的68日確定為“世界海洋日”.201968日,某大學(xué)的行政主管部門從該大學(xué)隨機(jī)抽取100名大學(xué)生進(jìn)行一次海洋知識測試,并按測試成績(單位:分)分組如下:第一組[65,70),第二組[70,75),第二組[75,80),第四組[80,85),第五組[85,90],得到頻率分布直方圖如下圖:

1)求實(shí)數(shù)的值;

2)若從第四組、第五組的學(xué)生中按組用分層抽樣的方法抽取6名學(xué)生組成中國海洋實(shí)地考察小隊(duì),出發(fā)前,用簡單隨機(jī)抽樣方法從6人中抽取2人作為正、副隊(duì)長,列舉出所有的基本事件并求“抽取的2人為不同組”的概率.

【答案】(1)(2)基本事件見解析, 所求的概率為

【解析】

1)由所有小矩形面積和為1計(jì)算出;

2)先計(jì)算出第4、5兩組人數(shù),再按比例計(jì)算出抽取的人數(shù),然后把第四組的4人表示為,,,第五組的2人表示為,,用列舉法寫出所有基本事件,并計(jì)數(shù)求出概率。

1)據(jù)題意,得,

.

2)據(jù)題意知,隨機(jī)抽取100名大學(xué)生中第四組有20人,

第五組有10人,

∴抽取6名學(xué)生中有第四組人,即4人,

抽取6名學(xué)生中有第五組人,即2.

設(shè)6人中來自第四組的4人為,,,,來自第五組的2人為,,從中抽取2人的所有基本事件有:,,,,,,,,,,,15種,

其中2人來自不同組的事件有,,,,,,8種,

∴所求的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟(jì)實(shí)力的不斷提升,居民收人也在不斷增加。某家庭2018年全年的收入與2014年全年的收入相比增加了一倍,實(shí)現(xiàn)翻番.同時(shí)該家庭的消費(fèi)結(jié)構(gòu)隨之也發(fā)生了變化,現(xiàn)統(tǒng)計(jì)了該家庭這兩年不同品類的消費(fèi)額占全年總收入的比例,得到了如下折線圖:

則下列結(jié)論中正確的是( )

A. 該家庭2018年食品的消費(fèi)額是2014年食品的消費(fèi)額的一半

B. 該家庭2018年教育醫(yī)療的消費(fèi)額與2014年教育醫(yī)療的消費(fèi)額相當(dāng)

C. 該家庭2018年休閑旅游的消費(fèi)額是2014年休閑旅游的消費(fèi)額的五倍

D. 該家庭2018年生活用品的消費(fèi)額是2014年生活用品的消費(fèi)額的兩倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,分別為橢圓的左、右焦點(diǎn)點(diǎn)在橢圓上,的周長為6.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點(diǎn)的直線與橢圓交于兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn),是否存在常數(shù),使得恒成立?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上周某校高三年級學(xué)生參加了數(shù)學(xué)測試,年級組織任課教師對這次考試進(jìn)行成績分析現(xiàn)從中隨機(jī)選取了40名學(xué)生的成績作為樣本,已知這40名學(xué)生的成績?nèi)吭?/span>40分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組;第二組;……;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.

1)估計(jì)這次月考數(shù)學(xué)成績的平均分和眾數(shù);

2)從成績大于等于80分的學(xué)生中隨機(jī)選2名,求至少有1名學(xué)生的成績在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平面,底面是正方形,且,中點(diǎn).

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,EM,N分別是BC,BB1,A1D的中點(diǎn).

1)證明:MN∥平面C1DE;

2)求點(diǎn)C到平面C1DE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線過點(diǎn)且漸近線為,則下列結(jié)論正確的個(gè)數(shù)為(

的實(shí)軸長為;②的離心率為;

③曲線經(jīng)過的一個(gè)焦點(diǎn);④直線有兩個(gè)公共點(diǎn).

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線上,直線l過點(diǎn)且與垂直,垂足為P.

1)當(dāng)時(shí),求l的極坐標(biāo)方程;

2)當(dāng)MC上運(yùn)動(dòng)且P在線段OM上時(shí),求P點(diǎn)軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若不等式解集是,求不等式解集;

(2)當(dāng)時(shí),對任意的成立實(shí)數(shù)取值范圍.

查看答案和解析>>

同步練習(xí)冊答案