(本小題滿10分)設(shè)直線的方程為.
(1) 若在兩坐標(biāo)軸上的截距相等,求的方程;
(2) 若不經(jīng)過第二象限,求實(shí)數(shù)的取值范圍.
(1) .(2) a≤-1.
解析試題分析:
(Ⅰ)根據(jù)直線方程求出它在兩坐標(biāo)軸上的截距,根據(jù)它在兩坐標(biāo)軸上的截距相等,求出a的值,即得直線l方程.
(Ⅱ)把直線方程化為斜截式為 y=-(a+1)x-a-2,若l不經(jīng)過第二象限,則a="-1" 或 -(a+1)》0,-a-2≤0,由此求得實(shí)數(shù)a的取值范圍。
解:(1)當(dāng)直線過原點(diǎn)時,該直線在軸和軸上的截距都為零,截距相等,
∴,方程即. ﹍﹍﹍﹍﹍﹍﹍2分
若,由于截距存在,∴ , ﹍﹍﹍﹍﹍﹍﹍3分
即,∴, 方程即. ﹍﹍﹍﹍﹍﹍﹍﹍5分
(2)法一:將的方程化為, ﹍﹍﹍﹍﹍﹍﹍﹍7分
∴欲使不經(jīng)過第二象限,當(dāng)且僅當(dāng) ﹍﹍﹍﹍﹍﹍﹍9分
∴a≤-1. 所以的取值范圍是a≤-1. ﹍﹍﹍﹍﹍﹍10分
法二:將的方程化為(x+y+2)+a(x-1)=0(a∈R), ﹍﹍﹍﹍﹍﹍﹍7分
它表示過l1:x+y+2=0與l2:x-1=0的交點(diǎn)(1,-3)的直線系(不包括x=1).由圖象可知l的斜率-(a+1)≥0時,l不經(jīng)過第二象限,∴a≤-1. ﹍﹍﹍﹍﹍﹍﹍﹍10分
考點(diǎn):本題主要考查直線方程的一般式,直線在坐標(biāo)軸上的截距的定義,直線在坐標(biāo)系中的位置與它的斜率、截距的關(guān)系,屬于基礎(chǔ)題
點(diǎn)評:解決該試題的易錯點(diǎn)是對于直線在坐標(biāo)軸上截距相等的理解中,缺少過原點(diǎn)的情況的分析。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩直線。求分別滿足下列條件的的值.
(1)直線過點(diǎn),并且直線與垂直;
(2)直線與直線平行,并且直線在軸上的截距為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分8分)已知直線經(jīng)過點(diǎn),且垂直于直線,
(1)求直線的方程;(2)求直線與兩坐標(biāo)軸圍成三角形的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)已知光線經(jīng)過已知直線和的交點(diǎn), 且射到軸上一點(diǎn) 后被軸反射.
(1)求點(diǎn)關(guān)于軸的對稱點(diǎn)的坐標(biāo);
(2)求反射光線所在的直線的方程.
(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對C1上任意一點(diǎn)M,M到直線x=﹣2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(Ⅰ)求曲線C1的方程;
(1-4班做)(Ⅱ)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=﹣4上運(yùn)動時,四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.
(5-7班做)(Ⅱ)設(shè)P(-4,1)為圓C2外一點(diǎn),過P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D.證明:四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l的傾斜角為135°,且經(jīng)過點(diǎn)P(1,1).
(Ⅰ)求直線l的方程;
(Ⅱ)求點(diǎn)A(3,4)關(guān)于直線l的對稱點(diǎn)A¢的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com