【題目】如圖所示,某地出土的一種“釘”是由四條線段組成,其結(jié)構(gòu)能使它任意拋至水平面后,總有一端所在的直線豎直向上,并記組成該“釘”的四條線段的公共點(diǎn)為O,釘尖為

設(shè),當(dāng),在同一水平面內(nèi)時(shí),求與平面所成角的大小結(jié)果用反三角函數(shù)值表示

若該“釘”的三個(gè)釘尖所確定的三角形的面積為,要用某種線型材料復(fù)制100枚這種“釘”損耗忽略不計(jì),共需要該種材料多少米?

【答案】(1) (2)

【解析】

組成該種釘?shù)乃臈l線段長(zhǎng)必相等,且兩兩所成的角相等,,,兩兩連結(jié)后得到的四面體為正四面體,延長(zhǎng)交平面B,平面,連結(jié),則就是與平面所成角,由此能求出與平面所成角的大。

推導(dǎo)出,從而,由此能求出要用某種線型材料復(fù)制100枚這種損耗忽略不計(jì),共需要該種材料的長(zhǎng)度.

根據(jù)題意,可知組成該種釘?shù)乃臈l線段長(zhǎng)必相等,且兩兩所成的角相等,,,兩兩連結(jié)后得到的四面體為正四面體,

延長(zhǎng)交平面B,則平面,連結(jié)

在平面上的射影,

就是與平面所成角,

設(shè),則

中,

,

,

(其中,

,

與平面所成角的大小為

,

根據(jù)可得

,

要用某種線型材料復(fù)制100枚這種損耗忽略不計(jì),共需要該種材料:

().

要用某種線型材料復(fù)制100枚這種損耗忽略不計(jì),共需要該種材料

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn) Aab),拋物線Ca ≠0 , b ≠0 , a ≠2p).過(guò)點(diǎn) A 作直線l ,交拋物線 C 于點(diǎn)P 、Q .如果以線段 PQ 為直徑的圓過(guò)拋物線C 的頂點(diǎn),求直線 l 的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年,我國(guó)繼續(xù)實(shí)行個(gè)人所得稅專項(xiàng)附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息、住房租金、贍養(yǎng)老人等六項(xiàng)專項(xiàng)附加扣除.某單位老、中、青員工分別有人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取50人調(diào)查專項(xiàng)附加扣除的享受情況.

(Ⅰ)應(yīng)從老、中、青員工中分別抽取多少人?

(Ⅱ)抽取的50人中,享受至少兩項(xiàng)專項(xiàng)附加扣除的員工有5人,分別記為.享受情況如下表,其中“○”表示享受,“×”表示不享受.現(xiàn)從這5人中隨機(jī)抽取2人接受采訪.

員工

項(xiàng)目

A

B

C

D

E

子女教育

×

×

繼續(xù)教育

×

×

×

大病醫(yī)療

×

×

×

住房貸款利息

×

×

住房租金

×

×

×

贍養(yǎng)老人

×

×

×

1)試用所給字母列舉出所有可能的抽取結(jié)果;

2)設(shè)為事件抽取的2人享受的專項(xiàng)附加扣除全都不相同,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王投資1萬(wàn)元2萬(wàn)元、3萬(wàn)元獲得的收益分別是4萬(wàn)元、9萬(wàn)元、16萬(wàn)元為了預(yù)測(cè)投資資金x(萬(wàn)元)與收益y萬(wàn)元)之間的關(guān)系,小王選擇了甲模型和乙模型.

1)根據(jù)小王選擇的甲、乙兩個(gè)模型,求實(shí)數(shù)a,b,c,p,q,r的值

2)若小王投資4萬(wàn)元,獲得收益是25.2萬(wàn)元,請(qǐng)問(wèn)選擇哪個(gè)模型較好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游戲廠商對(duì)新出品的一款游戲設(shè)定了“防沉迷系統(tǒng)”,規(guī)則如下:

①3小時(shí)以內(nèi)(3小時(shí))為健康時(shí)間,玩家在這段時(shí)間內(nèi)獲得的累積經(jīng)驗(yàn)值單位:與游玩時(shí)間小時(shí))滿足關(guān)系式:;

②35小時(shí)(5小時(shí))為疲勞時(shí)間,玩家在這段時(shí)間內(nèi)獲得的經(jīng)驗(yàn)值為即累積經(jīng)驗(yàn)值不變);

超過(guò)5小時(shí)為不健康時(shí)間,累積經(jīng)驗(yàn)值開(kāi)始損失,損失的經(jīng)驗(yàn)值與不健康時(shí)間成正比例關(guān)系,比例系數(shù)為50.

當(dāng)時(shí),寫(xiě)出累積經(jīng)驗(yàn)值E與游玩時(shí)間t的函數(shù)關(guān)系式,并求出游玩6小時(shí)的累積經(jīng)驗(yàn)值;

該游戲廠商把累積經(jīng)驗(yàn)值E與游玩時(shí)間t的比值稱為“玩家愉悅指數(shù)”,記作;若,且該游戲廠商希望在健康時(shí)間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于24,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的極值;

2)討論函數(shù)的單調(diào)性;

3)若對(duì),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】物聯(lián)網(wǎng)興起、發(fā)展、完善極大的方便了市民生活需求.某市統(tǒng)計(jì)局隨機(jī)地調(diào)查了該市某社區(qū)的100名市民網(wǎng)上購(gòu)菜狀況,其數(shù)據(jù)如下:

每周網(wǎng)上買(mǎi)菜次數(shù)

1

2

3

4

5

6次及以上

總計(jì)

10

8

7

3

2

15

45

5

4

6

4

6

30

55

總計(jì)

15

12

13

7

8

45

100

1)把每周網(wǎng)上買(mǎi)菜次數(shù)超過(guò)3次的用戶稱為“網(wǎng)上買(mǎi)菜熱愛(ài)者”,能否在犯錯(cuò)誤概率不超過(guò)0.005的前提下,認(rèn)為是否為“網(wǎng)上買(mǎi)菜熱愛(ài)者”與性別有關(guān)?

2)把每周使用移動(dòng)支付6次及6次以上的用戶稱為“網(wǎng)上買(mǎi)菜達(dá)人”,視頻率為概率,在我市所有“網(wǎng)上買(mǎi)菜達(dá)人”中,隨機(jī)抽取4名用戶求既有男“網(wǎng)上買(mǎi)菜達(dá)人”又有女“網(wǎng)上買(mǎi)菜達(dá)人”的概率.

附公式及表如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.076

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年是中國(guó)改革開(kāi)放的第40周年,為了充分認(rèn)識(shí)新形勢(shì)下改革開(kāi)放的時(shí)代性,某地的民調(diào)機(jī)構(gòu)隨機(jī)選取了該地的100名市民進(jìn)行調(diào)查,將他們的年齡分成6段:,并繪制了如圖所示的頻率分布直方圖.

(1)現(xiàn)從年齡在內(nèi)的人員中按分層抽樣的方法抽取8人,再?gòu)倪@8人中隨機(jī)抽取3人進(jìn)行座談,用表示年齡在內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望;

(2)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地抽取20名市民進(jìn)行調(diào)查,其中有名市民的年齡在的概率為.當(dāng)最大時(shí),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案