在一個(gè)袋子中裝有分別標(biāo)注數(shù)字1,2,3,4,5的5個(gè)小球,這些小球除去標(biāo)注的數(shù)字外完全相同.甲、乙兩人玩一種游戲,甲先摸出一個(gè)球,記下球上的數(shù)字后放回,乙再摸出一個(gè)小球,記下球上的數(shù)字,如果兩個(gè)數(shù)字之和為偶數(shù)則甲勝,否則為乙勝.
(1)求兩數(shù)字之和為6的概率;
(2)這種游戲規(guī)則公平嗎?試說明理由.
分析:(1)設(shè)“兩數(shù)字之和為6”為事件A,事件A包含的5個(gè)基本事件,甲、乙二人取出的數(shù)字共有5×5=25(個(gè))等可能的結(jié)果,由此能求出P(A).
(2)這種游戲規(guī)則不公平.設(shè)“甲勝”為事件B,“乙勝”為事件C,則甲勝即兩數(shù)字之和為偶數(shù)所包含的基本事件數(shù)為13個(gè).以甲勝的概率P(B)=
13
25
,從而乙勝的概率P(C)=1-
13
25
=
12
25
.由于P(B)≠P(C),所以這種游戲規(guī)則不公平.
解答:解:(1)設(shè)“兩數(shù)字之和為6”為事件A,事件A包含的基本事件為
(1,5),(2,4),(3,3),(4,2),(5,1),共5個(gè).
又甲、乙二人取出的數(shù)字共有5×5=25(個(gè))等可能的結(jié)果,
所以P(A)=
5
25
=
1
5

答:兩數(shù)字之和為6的概率為
1
5

(2)這種游戲規(guī)則不公平.
設(shè)“甲勝”為事件B,“乙勝”為事件C,
則甲勝即兩數(shù)字之和為偶數(shù)所包含的基本事件數(shù)為13個(gè):
(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),
(4,2),(4,4),(5,1),(5,3),(5,5).
所以甲勝的概率P(B)=
13
25
,從而乙勝的概率P(C)=1-
13
25
=
12
25

由于P(B)≠P(C),所以這種游戲規(guī)則不公平.
點(diǎn)評(píng):本題考查概率的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意列舉法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在一個(gè)袋子中裝有分別標(biāo)注數(shù)字1,2,3,4,5的五個(gè)小球,這些小球除標(biāo)注的數(shù)字外完全相同.現(xiàn)從中隨機(jī)取出2個(gè)小球,則取出的小球標(biāo)注的數(shù)字之和為3或6的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個(gè)袋子中裝有分別標(biāo)注1,2,3,4,5的五個(gè)小球,這些小球除標(biāo)注的數(shù)字外完全相同,現(xiàn)從中隨機(jī)取出2個(gè)小球,則取出小球標(biāo)注的數(shù)字之差的絕對(duì)值為2或4的概率是( 。
A、
1
10
B、
3
10
C、
2
5
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個(gè)袋子中裝有分別標(biāo)注數(shù)字1,2,3,4,5的五個(gè)小球,這些小球除標(biāo)注的數(shù)字外完全相同.現(xiàn)從中隨機(jī)取出2個(gè)小球,則取出的小球標(biāo)注的數(shù)字之和為3的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個(gè)袋子中裝有分別標(biāo)注數(shù)字1,2,3,4,5的五個(gè)小球,這些小球除標(biāo)注的數(shù)字外完全相同.現(xiàn)從中隨機(jī)取出2個(gè)小球,則取出的小球標(biāo)注的數(shù)字之和為6的概率是
1
5
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)在一個(gè)袋子中裝有分別標(biāo)注數(shù)字1,2,3,4,5的五個(gè)小球,現(xiàn)從中隨機(jī)取出2個(gè)小球,則取出的2個(gè)小球標(biāo)注的數(shù)字之和為5的概率是( 。

查看答案和解析>>

同步練習(xí)冊答案