【題目】商品價(jià)格與商品需求量是經(jīng)濟(jì)學(xué)中的一種基本關(guān)系,某服裝公司需對(duì)新上市的一款服裝制定合理的價(jià)格,需要了解服裝的單價(jià)x(單位:元)與月銷量y(單位:件)和月利潤z(單位:元)的影響,對(duì)試銷10個(gè)月的價(jià)格和月銷售量()數(shù)據(jù)作了初步處理,得到如圖所示的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
x | y | |||||
61 | 0.018 | 372 | 2670 | 26 | 0.0004 |
表中.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為需求量y關(guān)于價(jià)格x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)已知這批服裝的成本為每件10元,根據(jù)(1)的結(jié)果回答下列問題;
(i)預(yù)測(cè)當(dāng)服裝價(jià)格時(shí),月銷售量的預(yù)報(bào)值是多少?
(span>ii)當(dāng)服裝價(jià)格x為何值時(shí),月利潤的預(yù)報(bào)值最大?(參考數(shù)據(jù))
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
【答案】(1);(2);(3)(i)502;(ii)當(dāng)服裝價(jià)格時(shí),月利潤的預(yù)報(bào)值最大.
【解析】
(1)根據(jù)散點(diǎn)圖,結(jié)合函數(shù)圖像,即可容易判斷;
(2)根據(jù)參考數(shù)據(jù),先建立y關(guān)w的線性回歸方程,再將其轉(zhuǎn)化為與之間的函數(shù)即可;
(3)(ⅰ)根據(jù)(2)中所求回歸方程,即可代值求解;
(ⅱ)根據(jù)(2)中所求,結(jié)合利潤的計(jì)算,利用均值不等式即可求得.
(1)由散點(diǎn)圖可以判斷,作為需求量關(guān)于價(jià)格的回歸方程類型.
(2)令先建立關(guān)的線性回歸方程,
由于
,
所以關(guān)于的線性回歸方程為,
因此關(guān)于的回歸方程為.
(3)(。┯桑2)可知當(dāng)價(jià)格時(shí),
月銷售價(jià)的預(yù)報(bào)值為.
(ⅱ)由(2)可知月利潤的預(yù)報(bào)值為,
所以當(dāng),即時(shí),月利潤的預(yù)報(bào)值最大,
故當(dāng)服裝價(jià)格時(shí),月利潤的預(yù)報(bào)值最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
若,求的單調(diào)區(qū)間;
是否存在實(shí)數(shù)a,使的最小值為0?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形為矩形, ,為的中點(diǎn),將沿折起,得到四棱錐,設(shè)的中點(diǎn)為,在翻折過程中,得到如下有三個(gè)命題:
①平面,且的長度為定值;
②三棱錐的最大體積為;
③在翻折過程中,存在某個(gè)位置,使得.
其中正確命題的序號(hào)為__________.(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn),,直線、相交于點(diǎn),且它們的斜率之積為,記動(dòng)點(diǎn)的軌跡為曲線。
(1)求曲線的方程;
(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),是否存在定點(diǎn),使得直線與斜率之積為定值,若存在,求出坐標(biāo);若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),為直線l上一點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的方程為:,動(dòng)點(diǎn)在橢圓上,為原點(diǎn),線段的中點(diǎn)為.
(1)以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,求點(diǎn)的軌跡的極坐標(biāo)方程;
(2)設(shè)直線的參數(shù)方程為(為參數(shù)),與點(diǎn)的軌跡交于、兩點(diǎn),求弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)已知過原點(diǎn)的動(dòng)直線與圓 相交于不同的兩點(diǎn),.
(1)求圓的圓心坐標(biāo);
(2)求線段的中點(diǎn)的軌跡的方程;
(3)是否存在實(shí)數(shù),使得直線 與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐S﹣ABC中,SA=SB=SC,∠ABC=90°,AB>BC,E,F,G分別是AB,BC,CA的中點(diǎn),記直線SE與SF所成的角為α,直線SG與平面SAB所成的角為β,平面SEG與平面SBC所成的銳二面角為γ,則( )
A.α>γ>βB.α>β>γC.γ>α>βD.γ>β>α
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com