已知△ABC的周長為12,頂點(diǎn)A,B的坐標(biāo)分別為(-2,0),(2,0),C為動(dòng)點(diǎn).
(1)求動(dòng)點(diǎn)C的軌跡E的方程;
(2)過原點(diǎn)作兩條關(guān)于y軸對(duì)稱的直線(不與坐標(biāo)軸重合),使它們分別與曲線E交于兩點(diǎn),求四點(diǎn)所對(duì)應(yīng)的四邊形的面積的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面內(nèi)動(dòng)點(diǎn)P(x,y)與兩定點(diǎn)A(-2, 0), B(2,0)連線的斜率之積等于,若點(diǎn)P的軌跡為曲線E,過點(diǎn) 直線 交曲線E于M,N兩點(diǎn).
(Ⅰ)求曲線E的方程,并證明:MAN是一定值;
(Ⅱ)若四邊形AMBN的面積為S,求S的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是,,并且經(jīng)過點(diǎn),求它的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓的對(duì)稱中心在坐標(biāo)原點(diǎn),一個(gè)頂點(diǎn)為,右焦點(diǎn)F與點(diǎn) 的距離為2。
(1)求橢圓的方程;
(2)斜率的直線與橢圓相交于不同的兩點(diǎn)M,N滿足,求直線l的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)橢圓的左右焦點(diǎn)為,上頂點(diǎn)為,點(diǎn)關(guān)于對(duì)稱,且
(1)求橢圓的離心率;
(2)已知是過三點(diǎn)的圓上的點(diǎn),若的面積為,求點(diǎn)到直線距離的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線.命題p: 直線l1:與拋物線C有公共點(diǎn).命題q: 直線l2:被拋物線C所截得的線段長大于2.若為假, 為真,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為(,0).
(1)求雙曲線C的方程;
(2)若直線l:y=kx+與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且·>2(其中O為原點(diǎn)),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分14分)如圖在平面直角坐標(biāo)系中,分別是橢圓的左右焦點(diǎn),頂點(diǎn)的坐標(biāo)是,連接并延長交橢圓于點(diǎn),過點(diǎn)作軸的垂線交橢圓于另一點(diǎn),連接.
(1)若點(diǎn)的坐標(biāo)為,且,求橢圓的方程;
(2)若,求橢圓離心率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為.過點(diǎn)
作直線交拋物線與兩點(diǎn)(在第一象限內(nèi)).
(1)若與焦點(diǎn)重合,且.求直線的方程;
(2)設(shè)關(guān)于軸的對(duì)稱點(diǎn)為.直線交軸于. 且.求點(diǎn)到直線的距離的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com