經(jīng)市場(chǎng)調(diào)查,某旅游城市在過去的一個(gè)月內(nèi)(以30天計(jì)),旅游人數(shù)f(t)(萬人)與時(shí)間t(天)的函數(shù)關(guān)系近似滿足f(t)=4+,人均消費(fèi)g(t)(元)與時(shí)間t(天)的函數(shù)關(guān)系近似滿足g(t)=115-|t-15|.
(1)求該城市的旅游日收益w(t)(萬元)與時(shí)間t(1≤t≤30,t∈N*)的函數(shù)關(guān)系式;
(2)求該城市旅游日收益的最小值(萬元).
(1)(115-|t-15|)(1≤t≤30,t∈N*)(2)403萬元
(1)由題意得,w(t)=f(tg(t)=(115-|t-15|)(1≤t≤30,t∈N*).(5分)
(2)因?yàn)?i>w(t)= (7分),
①當(dāng)1≤t<15時(shí),w(t)=(t+100)=4+401≥4×2+401=441,
當(dāng)且僅當(dāng)t,即t=5時(shí)取等號(hào).(10分)
②當(dāng)15≤t≤30時(shí),w(t)=(130-t)=519+,
可證w(t)在t∈[15,30]上單調(diào)遞減,所以當(dāng)t=30時(shí),w(t)取最小值為403.(13分)
由于403<441,所以該城市旅游日收益的最小值為403萬元.(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是定義在上的奇函數(shù),當(dāng)時(shí),
(1)求;
(2)求的解析式;
(3)若,求區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=若|f(x)|≥ax,則a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

現(xiàn)有一張長(zhǎng)為80 cm,寬為60cm的長(zhǎng)方形鐵皮ABCD,準(zhǔn)備用它做成一只無蓋長(zhǎng)方體鐵皮盒,要求材料利用率為100%,不考慮焊接處損失.如圖,若長(zhǎng)方形ABCD的一個(gè)角剪下一塊正方形鐵皮,作為鐵皮盒的底面,用余下材料剪拼后作為鐵皮盒的側(cè)面,設(shè)長(zhǎng)方體的底面邊長(zhǎng)為x(cm),高為y(cm),體積為V(cm3)

(1)求出xy的關(guān)系式;
(2)求該鐵皮盒體積V的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)對(duì)一切實(shí)數(shù)x都滿足ff,并且方程f(x)=0有三個(gè)實(shí)根,則這三個(gè)實(shí)根的和為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在R上的函數(shù)f(x)滿足f(x+1)=2f(x).若當(dāng)0≤x≤1時(shí),f(x)=x(1-x),則當(dāng)-1≤x≤0時(shí),f(x)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=則滿足f(x)≤2的x的取值范圍是(  ).
A.[-1,2]B.[0,2]C.[1,+∞) D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某養(yǎng)殖廠需定期購(gòu)買飼料,已知該廠每天需要飼料200千克,每千克飼料的價(jià)格為1.8元,飼料的保管費(fèi)與其他費(fèi)用平均每千克每天0.03元,購(gòu)買飼料每次支付運(yùn)費(fèi)300元.
(1)求該廠多少天購(gòu)買一次飼料才能使平均每天支付的總費(fèi)用最少;
(2)若提供飼料的公司規(guī)定,當(dāng)一次購(gòu)買飼料不少于5噸時(shí),其價(jià)格可享受八五折優(yōu)惠(即原價(jià)的85%).問:該廠是否應(yīng)考慮利用此優(yōu)惠條件?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),,則下列選項(xiàng)正確的是(    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案