設拋物線的焦點為,經(jīng)過點的直線與拋物線相交于兩點且點恰為的中點,則          
8

試題分析:設,因為的中點,所以,
由點在拋物線上,所以
所以
所以答案填:8.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點A(-1,0),B(1,-1)和拋物線.,O為坐標原點,過點A的動直線l交拋物線C于M、P,直線MB交拋物線C于另一點Q,如圖.
(1)證明: 為定值;
(2)若△POM的面積為,求向量的夾角;
(3)證明直線PQ恒過一個定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線的中心在原點,對稱軸為坐標軸,離心率e=
3
,一條準線的方程為3x-
6
=0
,求此雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設F1,F(xiàn)2是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的兩個焦點,P是C上一點,若|PF1|+|PF2|=6a,且△PF1F2的最小內(nèi)角為30°,則C的漸近線方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個動圓與定圓相內(nèi)切,且與定直線相切,則此動圓的圓心的軌跡方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線.命題p: 直線l1:與拋物線C有公共點.命題q: 直線l2:被拋物線C所截得的線段長大于2.若為假, 為真,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線4kx-4y-k=0與拋物線y2=x交于A、B兩點,若|AB|=4,則弦AB的中點到直線x+=0的距離等于(  )
A.      B.2          C.      D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)(2011•廣東)在平面直角坐標系xOy中,直線l:x=﹣2交x軸于點A,設P是l上一點,M是線段OP的垂直平分線上一點,且滿足∠MPO=∠AOP.
(1)當點P在l上運動時,求點M的軌跡E的方程;
(2)已知T(1,﹣1),設H是E上動點,求|HO|+|HT|的最小值,并給出此時點H的坐標;
(3)過點T(1,﹣1)且不平行與y軸的直線l1與軌跡E有且只有兩個不同的交點,求直線l1的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的準線與圓相切,則的值為
A.B.1C.2D.4

查看答案和解析>>

同步練習冊答案