已知f(x)=exax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.

(1)當a≤0時,f(x)的單調(diào)增區(qū)間為(-∞,+∞);當a>0時,f(x)的單調(diào)增區(qū)間為(ln a,+∞).(2)(-∞,0].

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,求曲線在點的切線方程;
(2)對一切,恒成立,求實數(shù)的取值范圍;
(3)當時,試討論內(nèi)的極值點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)y=xlnx+1.
(1)求這個函數(shù)的導數(shù);
(2)求這個函數(shù)的圖象在點x=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)=axn(1-x)+b(x>0),n為正整數(shù),ab為常數(shù).曲線yf(x)在(1,f(1))處的切線方程為xy=1.
(1)求a,b的值;
(2)求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖像過坐標原點,且在點處的切線的斜率是
(1)求實數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對任意給定的正實數(shù),曲線上是否存在兩點,使得是以為直角頂點的直角三角形,且此三角形斜邊的中點在軸上?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=.
(1)函數(shù)f(x)在點(0,f(0))的切線與直線2xy-1=0平行,求a的值;
(2)當x∈[0,2]時,f(x)≥恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的極小值;
(2)當時,過坐標原點作曲線的切線,設切點為,求實數(shù)的值;
(3)設定義在上的函數(shù)在點處的切線方程為時,若內(nèi)恒成立,則稱為函數(shù)的“轉點”.當時,試問函數(shù)是否存在“轉點”.若存在,請求出“轉點”的橫坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),,其中的函數(shù)圖象在點處的切線平行于軸.
(1)確定的關系;    (2)若,試討論函數(shù)的單調(diào)性;
(3)設斜率為的直線與函數(shù)的圖象交于兩點)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80,已知貨車每小時的運輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為a元.
(1)將全程運輸成本y(元)表示為速度v()的函數(shù),并指出這個函數(shù)的定義域;
(2)為了使全程運輸成本最小,貨車應以多大的速度行駛?

查看答案和解析>>

同步練習冊答案