設(shè)A1,A2是集合A的子集,且滿足:
(1)A1≠∅,A2≠∅.
(2)A1∩A2=∅.
(3)A=A1∪A2,則稱{A1,A2}是A的一個二分劃.
若集合中有10個元素,則A的全部二分劃的個數(shù)為
 
考點(diǎn):子集與交集、并集運(yùn)算的轉(zhuǎn)換
專題:計(jì)算題,集合
分析:由題意知,A的全部二分劃的個數(shù)為集合A的非空真子集的個數(shù)的
1
2
;而對于有限集合,我們有以下結(jié)論:若一個集合中有n個元素,則它有2n-2個非空真子集.
解答: 解:由題意知,當(dāng)A1確定時,A2也確定了;
則實(shí)質(zhì)是求集合A的非空真子集的個數(shù)的
1
2
;
即A的全部二分劃的個數(shù)為
210-2
2
=511.
故答案為:511.
點(diǎn)評:本題考查了學(xué)生對于新定義的理解與轉(zhuǎn)化能力,若一個集合中有n個元素,則它有2n個子集,有(2n-1)個真子集,2n-2個非空真子集,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2tx+1,x∈[-1,1],利用單調(diào)性求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11層大樓,3個人進(jìn)一部電梯,每層都停,三個人從不同的樓層下的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

單位向量
a
、
b
所成角為θ,任意向量
c
滿足(
a
-
c
)•(
b
-
c
)=0.
(1)當(dāng)θ=90°,求|
c
|的最大值;
(2)當(dāng)θ=60°,求|
c
|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是(  )
A、y=
1
x
B、f(x)=
(
1
2
)x,x<0
0,x=0
-2x,x>0
C、y=
ex-e-x
2
D、y=lg|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A、B、C的對邊分別為a,b,c,若
b
a
+
a
b
=6cosC,△ABC的面積為
3
8
c2,且滿足c2=2ab,則∠C=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義行列式運(yùn)算:|
a1a2
a3a4
|=a1a4-a2a3,將函數(shù)f(x)=|
3
  sinωx
 1  cosωx
|(ω>0)向左平移
6
個單位,所得圖象對應(yīng)的函數(shù)為偶函數(shù),則ω的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={k|y=
kx2-6kx+k+8
,x∈R},集合B={x|a≤x≤2a+1},若A∩B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)一動點(diǎn)P(x,y)到兩定點(diǎn)F1(-1,0),F(xiàn)(1,0)的距離之積等于2.
(Ⅰ)求△PF1F2周長的最小值;
(Ⅱ)求動點(diǎn)P(x,y)的軌跡C方程,用y2=f(x)形式表示;
(Ⅲ)類似教材(橢圓的性質(zhì)、雙曲線的性質(zhì)、拋物線的性質(zhì))中研究曲線的方法請你研究軌跡C的性質(zhì),請直接寫出答案.

查看答案和解析>>

同步練習(xí)冊答案