【題目】在平面直角坐標(biāo)系中,把位于直線y=k與直線y=l(k、l均為常數(shù),且k<l)之間的點(diǎn)所組成區(qū)域(含直線y=k,直線y=l)稱為“k⊕l型帶狀區(qū)域”,設(shè)f(x)為二次函數(shù),三點(diǎn)(﹣2,f(﹣2)+2)、(0,f(0)+2)、(2,f(2)+2)均位于“0⊕4型帶狀區(qū)域”,如果點(diǎn)(t,t+1)位于“﹣1⊕3型帶狀區(qū)域”,那么,函數(shù)y=|f(t)|的最大值為( )
A.
B.3
C.
D.2
【答案】C
【解析】解:設(shè)f(x)=ax2+bx+c,則|f(﹣2)|≤2,|f(0)|≤2,|f(2)|≤2, 即 ,即 ,
∵t+1∈[﹣1,3],∴|t|≤2,
故y=|f(t)|=| t2+ t+f(0)|
=| f(2)+ f(﹣2)+ f(0)|
≤ |t(t+2)|+ |t(t﹣2)|+ |4﹣t2|
= |t|(t+2)+ |t|(2﹣t)+ (4﹣t2)
═ (|t|﹣1)2+ ≤ ,
故選:C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的最值及其幾何意義的相關(guān)知識可以得到問題的答案,需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程選講]
已知曲線C1的極坐標(biāo)方程為ρ2cos2θ=8,曲線C2的極坐標(biāo)方程為 ,曲線C1、C2相交于A、B兩點(diǎn).
(Ⅰ)求A、B兩點(diǎn)的極坐標(biāo);
(Ⅱ)曲線C1與直線 (t為參數(shù))分別相交于M,N兩點(diǎn),求線段MN的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中為了推進(jìn)新課程改革,滿足不同層次學(xué)生的需求,決定從高一年級開始,在每周的周一、周三、周五的課外活動期間同時開設(shè)數(shù)學(xué)、物理、化學(xué)、生物和信息技術(shù)輔導(dǎo)講座,每位有興趣的同學(xué)可以在期間的任何一天參加任何一門科目的輔導(dǎo)講座,也可以放棄任何一門科目的輔導(dǎo)講座.(規(guī)定:各科達(dá)到預(yù)先設(shè)定的人數(shù)時稱為滿座,否則稱為不滿座)統(tǒng)計(jì)數(shù)據(jù)表明,各學(xué)科講座各天的滿座的概率如下表:
信息技術(shù) | 生物 | 化學(xué) | 物理 | 數(shù)學(xué) | |
周一 | |||||
周三 | |||||
周五 |
根據(jù)上表:
(1)求數(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座的概率;
(2)設(shè)周三各輔導(dǎo)講座滿座的科目數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐P﹣ABC的四個頂點(diǎn)都在球O的球面上,已知PA,PB,PC兩兩垂直,PA=1,PB+PC=4,當(dāng)三棱錐的體積最大時,球心O到平面ABC的距離是( )
A.
B.
C.
D. ﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣k(x﹣1)
(1)求f(x)的單調(diào)區(qū)間;并證明lnx+ ≥2(e為自然對數(shù)的底數(shù))恒成立;
(2)若函數(shù)f(x)的一個零點(diǎn)為x1(x1>1),f'(x)的一個零點(diǎn)為x0 , 是否存在實(shí)數(shù)k,使 =k,若存在,求出所有滿足條件的k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A、B均為實(shí)數(shù)集R的子集,記:A+B={a+b|a∈A,b∈B};
(1)已知A={0,1,2},B={﹣1,3},試用列舉法表示A+B;
(2)設(shè)a1= ,當(dāng)n∈N* , 且n≥2時,曲線 的焦距為an , 如果A={a1 , a2 , …,an},B= ,設(shè)A+B中的所有元素之和為Sn , 對于滿足m+n=3k,且m≠n的任意正整數(shù)m、n、k,不等式Sm+Sn﹣λSk>0恒成立,求實(shí)數(shù)λ的最大值;
(3)若整數(shù)集合A1A1+A1 , 則稱A1為“自生集”,若任意一個正整數(shù)均為整數(shù)集合A2的某個非空有限子集中所有元素的和,則稱A2為“N*的基底集”,問:是否存在一個整數(shù)集合既是自生集又是N*的基底集?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用對人民群眾的建康帶來一定的危害,為了給消費(fèi)者帶來放心的蔬菜,某農(nóng)村合作社會每年投入200萬元,搭建了甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入20萬元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入P、種黃瓜的年收入Q與投入a(單位:萬元)滿足P=80+4 ,Q= a+120,設(shè)甲大棚的投入為x(單位:萬元),每年兩個大棚的總收益為f(x)(單位:萬元).
(1)求f(50)的值;
(2)試問如何安排甲、乙兩個大棚的投入,才能使總收益f(x)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx﹣1, ,其中a為實(shí)數(shù). (Ⅰ)求函數(shù)g(x)的極值;
(Ⅱ)設(shè)a<0,若對任意的x1、x2∈[3,4](x1≠x2), 恒成立,求實(shí)數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是: (t是參數(shù)).
(1)若直線l與曲線C相交于A、B兩點(diǎn),且|AB|= ,試求實(shí)數(shù)m值.
(2)設(shè)M(x,y)為曲線C上任意一點(diǎn),求x+2y的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com