點P是以F1,F(xiàn)2為焦點的橢圓上的一點,過焦點F2作∠F1PF2的外角平分線的垂線,垂足為M點,則點M的軌跡是( 。
A.拋物線B.橢圓C.雙曲線D.圓

由題意,P是以F1,F(xiàn)2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,延長F2M交F1延長線于Q,得PQ=PF2
由橢圓的定義知PF1+PF2=2a,故有PF1+PQ=QF1=2a,
連接OM,知OM是三角形F1F2Q的中位線
∴OM=a,即點M到原點的距離是定值,由此知點M的軌跡是圓
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

圓x2+y2+2x+6y+9=0與圓x2+y2-6x+2y-15=0的位置關(guān)系為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓O′:(x-1)2+y2=36,點A(-1,0),M是圓上任意一點,線段AM的中垂線l和直線O′M相交于點Q,則點Q的軌跡方程為( 。
A.
x2
9
-
y2
8
=1
B.
x2
8
+
y2
9
=1
C.
x2
9
+
y2
8
=1
D.
x2
8
-
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)在平面直角坐標系xOy中,點B與點A(-1,1)關(guān)于原點O對稱,P是動點,且直線AP與BP的斜率之積等于-
1
3
.求動點P的軌跡方程.
(2)
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率為2,原點到直線AB的距離為
3
2
,其中A(0,-b)、B(a,0)求該雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動點P(x,y)與兩定點M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0).
(I)求動點P的軌跡C的方程;
(II)試根據(jù)λ的取值情況討論軌跡C的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三點A(0,4)、B(0,-4)、C(7,-3),△ABC外接圓為圓M(圓心M).
(1)求圓M的方程;
(2)若N(-7,0),R在圓M上運動,平面上一動點P滿足
RP
=4
PN
,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過原點O的橢圓有一個焦點F(0,4),且長軸長2a=10,求此橢圓的中心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若M、N為兩個定點且|MN|=6,動點P滿足
PM
PN
=0,則P點的軌跡是( 。
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一動圓和直線l:x=-
1
2
相切,并且經(jīng)過點F(
1
2
,0)

(Ⅰ)求動圓的圓心θ的軌跡C的方程;
(Ⅱ)若過點P(2,0)且斜率為k的直線交曲線C于M(x1,y1),N(x2,y2)兩點.
求證:OM⊥ON.

查看答案和解析>>

同步練習(xí)冊答案