數(shù)學(xué)公式,又對于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)將D用區(qū)間表示;
(2)求證:f(1)=f(-1).

解:(1)∵



且x≠0

證明:(2)令x1=x2=1,則f(1)=f(1)+f(1)
∴f(1)=0
令x1=x2=-1,則f(1)=f(-1)+f(-1)
∴f(-1)=0
所以f(1)=f(-1)…
分析:(1)由可得,解不等式可求D
(2)利用賦值,令x1=x2=1,可求f(1),令x1=x2=-1,可求f(-1),從而可證
點評:本題主要考查了利用對數(shù)函數(shù)的單調(diào)性求解不等式,絕對值不等式的求解及利用賦值求解抽象函數(shù)的函數(shù)值,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f(x)定義域為D={x|log2(
4|x|
-1)≥1},當(dāng)x>0時f(x)單調(diào)遞增
,又對于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)將D用區(qū)間表示;
(2)求證:f(1)=f(-1)=0;
(3)解不等式:f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)定義域為D={x|log2(
4|x|
-1)≥1}
,又對于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)將D用區(qū)間表示;
(2)求證:f(1)=f(-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)學(xué)公式,又對于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)將D用區(qū)間表示;
(2)求證:f(1)=f(-1)=0;
(3)解不等式:f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

f(x)定義域為D={x|log2(
4
|x|
-1)≥1}
,又對于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)將D用區(qū)間表示;
(2)求證:f(1)=f(-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

f(x)定義域為D={x|log2(
4
|x|
-1)≥1},當(dāng)x>0時f(x)單調(diào)遞增
,又對于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)將D用區(qū)間表示;
(2)求證:f(1)=f(-1)=0;
(3)解不等式:f(x)≤0.

查看答案和解析>>

同步練習(xí)冊答案