【題目】已知函數(shù).

(1)判斷函數(shù)的奇偶性;

(2)判斷并證明))上的單調(diào)性;

(3)若對任意恒成立,求的取值范圍.

【答案】(1)為奇函數(shù);(2)證明見解析;(3).

【解析】試題分析:

本題考查函數(shù)奇偶性的判斷和單調(diào)性的證明,以及根據(jù)恒成立問題求參數(shù)取值范圍。(1)根據(jù)奇偶性的判斷方法證明。(2)根據(jù)單調(diào)性的判斷方法證明。(3)根據(jù)函數(shù)的單調(diào)性將函數(shù)不等式轉(zhuǎn)化為一般不等式,通過分離參數(shù)的方法轉(zhuǎn)化為求具體函數(shù)的最值問題處理。

試題解析:

(1)定義域R關(guān)于原點對稱,

,

為奇函數(shù).

(2)證明:設(shè)R,且,

,

∵函數(shù) 上為增函數(shù),

,故,

.

∴函數(shù)上是增函數(shù) .

(3)

,

為奇函數(shù),

上是增函數(shù),

對任意恒成立,

對任意恒成立,

設(shè),則

上為增函數(shù),

∴當(dāng)時,函數(shù)取得最小值,且

。

故實數(shù)的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人從1,2,…,15這15個數(shù)中,依次任取一個數(shù)(不放回).則在已知甲取到的數(shù)是5的倍數(shù)的情況下,甲所取的數(shù)大于乙所取的數(shù)的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地西紅柿從日起開始上市.通過市場調(diào)查,得到西紅柿種植成本(就是每公斤西紅柿的種植成本,單位:元)與上市時間(單位:天)的數(shù)據(jù)如下表

上市時間

50

110

250

種植成本

150

108

150

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個函數(shù)描述西紅柿種植成本與上市時間的變化關(guān)系:;;;,并求出函數(shù)解析式;

(2)利用你選取的函數(shù),求西紅柿種植成本最低時的上市天數(shù)及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=﹣x+1與橢圓 + =1(a>b>0)相交于A、B兩點.
(1)若橢圓的離心率為 ,焦距為2,求線段AB的長;
(2)若向量 與向量 互相垂直(其中O為坐標(biāo)原點),當(dāng)橢圓的離心率e∈[ , ]時,求橢圓的長軸長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a≥0,試討論函數(shù)g(x)=lnx+ax2﹣(2a+1)x在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足a1=1,nSn+1﹣(n+1)Sn= ,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】濮陽市黃河灘區(qū)某村2010年至2016年人均純收入(單位:萬元)的數(shù)據(jù)如下表:

年份

2010

2011

2012

2013

2014

2015

2016

年份代號x

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2010年至2016年該村人均純收入的變化情況,并預(yù)測該村2017年人均純收入.
附:回歸直線的斜率和截距的最小乘法估計公式分別為: = , =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=4 x的焦點為F,A、B為拋物線上兩點,若 =3 ,O為坐標(biāo)原點,則△AOB的面積為(
A.8
B.4
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三條直線l1:4xy-4=0,l2mxy=0,l3:2x-3my-4=0.

(1)若直線l1,l2,l3交于一點,求實數(shù)m的值;

(2)若直線l1,l2l3不能圍成三角形,求實數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案