已知曲線C的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線L的參數(shù)方程是(t是參數(shù)).
(1)將曲線C的極坐標(biāo)方程和直線L參數(shù)方程轉(zhuǎn)化為普通方程;
(2)若直線L與曲線C相交于M、N兩點(diǎn),且,求實(shí)數(shù)m的值.
(1),;(2).
解析試題分析:
解題思路:(1)利用極坐標(biāo)方程、參數(shù)方程、普通方程的互化公式化簡即可;(2)利用,求得圓心到直線的距離,再利用點(diǎn)到直線的距離公式求值.
規(guī)律總結(jié):涉及直線與曲線的極坐標(biāo)方程、參數(shù)方程的問題,要注意先將極坐標(biāo)方程、參數(shù)方程與直角坐標(biāo)方程的相互轉(zhuǎn)化,再利用有關(guān)知識進(jìn)行求解.
試題解析:(1)曲線C的普通方程為
直線L的普通方程為
(2)因?yàn)榍C:
所以,圓心到直線的距離是
所以.
考點(diǎn):1.極坐標(biāo)方程、參數(shù)方程、普通方程的互化;2.弦長公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知直線的參數(shù)方程為.以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線的極坐標(biāo)方程為.當(dāng)直線與曲線相切時,則= ;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)直線的參數(shù)方程是(t為參數(shù)),曲線C的極坐標(biāo)方程是,則與曲線C相交的弦長是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線的參數(shù)方程為,(為參數(shù)),圓的參數(shù)方程為 ,(為參數(shù)).
(1)求直線和圓的普通方程;
(2)若直線與圓有公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
長為3的線段兩端點(diǎn)A,B分別在x軸正半軸和y軸的正半軸上滑動,,點(diǎn)P的軌跡為曲線C.
(1)以直線AB的傾斜角為參數(shù),求曲線C的參數(shù)方程;
(2)求點(diǎn)P到點(diǎn)D距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為。
(Ⅰ)把的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求與交點(diǎn)的極坐標(biāo)()。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l經(jīng)過點(diǎn)P(1,1),傾斜角α=.
(1)寫出直線l的參數(shù)方程;
(2)設(shè)l與圓x2+y2=4相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com