設A是單位圓上任意一點,是過點軸垂直的直線,是直線軸的交點,點在直線上,且滿足,當點在圓上運動時,記點的軌跡為曲線。

(1)求曲線的方程,判斷曲線為何種圓錐曲線,并求其焦點坐標。

(2)過原點斜率為的直線交曲線兩點,其中在第一象限,且它在軸上的射影為點,直線交曲線于另一點,是否存在,使得對任意的,都有?若存在,請說明理由。

 

【答案】

 (1)兩焦點坐標分別為,

(2)

【解析】本題主要考察求曲線的軌跡方程、直線與圓錐曲線的位置關系,要求能正確理解橢圓的標準方程及其幾何性質,并能熟練運用代數(shù)方法解決幾何問題,對運算能力有較高要求。

(Ⅰ)如圖1,設,則由

可得,,所以.            ①

因為點在單位圓上運動,所以.                  ②

將①式代入②式即得所求曲線的方程為.        

因為,所以當時,曲線是焦點在軸上的橢圓,兩焦點坐標分別為;當時,曲線是焦點在軸上的橢圓,兩焦點坐標分別為,.

(Ⅱ)解法1:如圖2、3,,設,,則,,

直線的方程為,將其代入橢圓的方程并整理可得

.

依題意可知此方程的兩根為,于是由韋達定理可得,即.因為點H在直線QN上,所以.

于是,.     

等價于,即,又,得,

故存在,使得在其對應的橢圓上,對任意的,都有.

 

解法2:如圖2、3,,設,,則,,

因為兩點在橢圓上,所以 兩式相減可得

.                          ③             

依題意,由點在第一象限可知,點也在第一象限,且,不重合,

. 于是由③式可得

.                              ④

,,三點共線,所以,即.                

于是由④式可得.

等價于,即,又,得

故存在,使得在其對應的橢圓上,對任意的,都有.

【點評】本題考查橢圓的標準方程,直線與圓錐曲線的位置關系;考查分類討論的數(shù)學思想以及運算求解的能力.本題是一個橢圓模型,求解標準方程時注意對焦點的位置分類討論,不要漏解;對于探討性問題一直是高考考查的熱點,一般先假設結論成立,再逆推所需要求解的條件,對運算求解能力和邏輯推理能力有較高的要求.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•湖北)設A是單位圓x2+y2=1上的任意一點,i是過點A與x軸垂直的直線,D是直線i與x軸的交點,點M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當點A在圓上運動時,記點M的軌跡為曲線C.
(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點坐標;
(Ⅱ)過原點且斜率為k的直線交曲線C于P、Q兩點,其中P在第一象限,它在y軸上的射影為點N,直線QN交曲線C于另一點H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A是單位圓x2+y2=1上任意一點,l是過點A與x軸垂直的直線,D是直線l與x軸的交點,點M在直線l上,且滿足當點A在圓上運動時,記點M的軌跡為曲線C。

(1)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求其焦點坐標。

(2)過原點斜率為K的直線交曲線C于P,Q兩點,其中P在第一象限,且它在y軸上的射影為點N,直線QN交曲線C于另一點H,是否存在m,使得對任意的K>0,都有PQ⊥PH?若存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省佛山市順德區(qū)高二(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

設A是單位圓x2+y2=1上的任意一點,i是過點A與x軸垂直的直線,D是直線i與x軸的交點,點M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當點A在圓上運動時,記點M的軌跡為曲線C.
(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點坐標;
(Ⅱ)過原點且斜率為k的直線交曲線C于P、Q兩點,其中P在第一象限,它在y軸上的射影為點N,直線QN交曲線C于另一點H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年湖北省高考數(shù)學試卷(理科)(解析版) 題型:解答題

設A是單位圓x2+y2=1上的任意一點,i是過點A與x軸垂直的直線,D是直線i與x軸的交點,點M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當點A在圓上運動時,記點M的軌跡為曲線C.
(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點坐標;
(Ⅱ)過原點且斜率為k的直線交曲線C于P、Q兩點,其中P在第一象限,它在y軸上的射影為點N,直線QN交曲線C于另一點H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案