Loading [MathJax]/jax/output/CommonHTML/jax.js
20.如圖,四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,且∠ABC=120°,PD⊥AB,平面PAB⊥平面ABCD,點(diǎn)E,F(xiàn)為棱PB,PC中點(diǎn),二面角F-AD-C的平面角的余弦值為31313
(1)求棱PA的長;
(2)求PD與平面ADFE所成角的正切值.

分析 (1)取AB中點(diǎn)O,連接OD,PO,證明PO⊥平面ABCD,建立坐標(biāo)系,利用向量方法求棱PA的長;
(2)平面ADFE的法向量為m=(1,3,3),PD=(3,0,-3),利用向量方法求求PD與平面ADFE所成角的正切值.

解答 解:(1)如圖,取AB中點(diǎn)O,連接OD,PO,
∵底面ABCD是邊長為2的菱形,且∠ABC=120°,
∴OD⊥AB,
∵AB⊥PD,PD∩OD=D,
∴AB⊥平面POD,
∴AB⊥PO,
∵O為AB的中點(diǎn),∴PA=PB.
∵平面PAB⊥平面ABCD,PO⊥AB,
∴PO⊥平面ABCD,
∴PO⊥OD,
建立如圖所示的坐標(biāo)系,設(shè)OP=h,平面FAD的法向量為n=(x,y,z),
則∵FD=(32,1,-h2),AD=(3,-1,0),
{32x+yh2z=03xy=0,取n=(1,3,336),
取平面ACD的法向量為OP=(0,0,h),則334+27h2h=31313,∴h=3,
∴PA=1+3=2;
(2)平面ADFE的法向量為m=(1,3,3),PD=(3,0,-3),
設(shè)PD與平面ADFE所成角為α,則sinα=||333|136|=213,
∴tanα=2211

點(diǎn)評(píng) 本題考查空間線面位置關(guān)系,線面角,考查向量方法的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)在[-3,4]上的圖象是一條連續(xù)的曲線,且其部分對(duì)應(yīng)值如表:
x-3-2-101234
f(x)6m-4-6-6-4n6
則函數(shù)f(x)的零點(diǎn)所在區(qū)間有( �。�
A.(-3,-1)和(-1,1)B.(-3,-1)和(2,4)C.(-1,1)和(1,2)D.(-∞,-3)和(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.甲乙兩種商品在過去一段時(shí)間內(nèi)的價(jià)格走勢如圖所示,假設(shè)某人持有資金120萬元,他可以在t1至t4的任意時(shí)刻買賣這兩種商品,且買賣能夠立即成交(其他費(fèi)用忽略不計(jì)),那么他持有的資金最多可變?yōu)椋ā 。?table class="qanwser">A.120萬元B.160萬元C.220萬元D.240萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.一個(gè)多面體的直觀圖如圖1所示,其正(主)視圖,側(cè)(左)視圖,俯視圖如圖2所示.
(1)若多面體底面對(duì)角線AC,BD交于點(diǎn)O,E為線段AA1的中點(diǎn),求證;OE∥平面A1C1C;
(2)求平面AA1D1與平面ABCD所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知中心在原點(diǎn)O,左焦點(diǎn)為F1(-1,0)的橢圓C的左頂點(diǎn)為A,上頂點(diǎn)為B,F(xiàn)1到直線AB的距離為77b.
(1)求橢圓C的方程;
(2)若橢圓C1方程為:x2m2+y2n2=1(m>n>0),橢圓C2方程為:x2m2+y2n2=3,若直線y=kx+b與兩橢圓C2、C交于四點(diǎn)(依次為P、Q、R、S),且PS+RS=2QS,原點(diǎn)到點(diǎn)E(k,b)的距離為32,求直線PS的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.?dāng)?shù)列{bn}(n∈N*)滿足b1=2,且12+222+…+n2n=n(n∈N*),數(shù)列{an}滿足an=3log2bn(n∈N*
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記f(n)=12|sinn|sinn+3),Tn=1f2a11+1f3a22+1f4a3b3+…+1fn+1ann,求證:16≤Tn524(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=xlnx.
(1)求f(x)單調(diào)區(qū)間以及 f(x)最小值.
(2)設(shè)F(x)=ax2+f′(x)(a∈[0,+∞)),討論函數(shù)F(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)向量a=(-1,2),=(m,1),若向量a+2與2a平行,則m=( �。�
A.72B.12C.32D.52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量a、滿足|a+|=23|a|=2,則a=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�