【題目】“團購”已經滲透到我們每個人的生活,這離不開快遞行業(yè)的發(fā)展,下表是2013-2017年全國快遞業(yè)務量(x億件:精確到0.1)及其增長速度(y%)的數據
(1)試計算2012年的快遞業(yè)務量;
(2)分別將2013年,2014年,…,2017年記成年的序號t:1,2,3,4,5;現已知y與t具有線性相關關系,試建立y關于t的回歸直線方程;
(3)根據(2)問中所建立的回歸直線方程,估算2019年的快遞業(yè)務量
附:回歸直線的斜率和截距地最小二乘法估計公式分別為:,
【答案】(1)(億件)(2)(3)2019年快遞業(yè)務增長量為(億件)
【解析】
(1) 設2012年的快遞業(yè)務量為a,根據題意列出方程求解即可; (2)先求出,,代入即可求出,再代入 即可求出,從而得到回歸直線方程;(3)首先利用(2)中求出的回歸直線方程求出2018年快遞業(yè)務增長量,再令,求出2019年快遞業(yè)務增長量.
(1)設2012年的快遞業(yè)務量為a,則,解得;
(2)
t | 1 | 2 | 3 | 4 | 5 |
y | 61 | 52 | 48 | 51 | 28 |
,
(3)令,預測2018年比上半年增長,
2018年快遞業(yè)務增長量為(億件)
令,預測2019年比上半年增長,
2019年快遞業(yè)務增長量為(億件).
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數方程為(t為參數),曲線C2的參數方程為(α為參數),以坐標原點為極點.x軸正半軸為極軸建立極坐標系.
(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標方程;
(Ⅱ)射線與曲線C2交于O,P兩點,射線與曲線C1交于點Q,若△OPQ的面積為1,求|OP|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知定點F(1,0),點A在x軸的非正半軸上運動,點B在y軸上運動,滿足0,A關于點B的對稱點為M,設點M的軌跡為曲線C.
(1)求C的方程;
(2)已知點G(3,﹣2),動直線x=t(t>3)與C相交于P,Q兩點,求過G,P,Q三點的圓在直線y=﹣2上截得的弦長的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】田忌賽馬是《史記》中記載的一個故事,說的是齊國大將軍田忌經常與齊國眾公子賽馬,孫臏發(fā)現田忌的馬和其他人的馬相差并不遠,都分為上、中、下三等.于是孫臏給田忌將軍獻策:比賽即將開始時,他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得了許多賭注.假設田忌的各等級馬與某公子的各等級馬進行一場比賽,田忌獲勝的概率如下表所示:
比賽規(guī)則規(guī)定:一次比賽由三場賽馬組成,每場由公子和田忌各出一匹馬參賽,結果只有勝和負兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.
(1)如果按孫臏的策略比賽一次,求田忌獲勝的概率;
(2)如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PCD⊥平面ABCD,AB=2,BC=1,,E為PB中點.
(Ⅰ)求證:PD∥平面ACE;
(Ⅱ)求證:PD⊥平面PBC;
(Ⅲ)求三棱錐E-ABC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點F是拋物線的焦點,若點在拋物線C上,且
(1)求拋物線C的方程;
(2)動直線與拋物線C相交于兩點,問:在x軸上是否存在定點(其中),使得x軸平分?若存在,求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓規(guī)是用來畫橢圓的一種器械,它的構造如圖所示,在一個十字形的金屬板上有兩條互相垂直的導槽,在直尺上有兩個固定的滑塊A,B,它們可分別在縱槽和橫槽中滑動,在直尺上的點M處用套管裝上鉛筆,使直尺轉動一周,則點M的軌跡C是一個橢圓,其中|MA|=2,|MB|=1,如圖,以兩條導槽的交點為原點O,橫槽所在直線為x軸,建立直角坐標系.
(1)將以射線Bx為始邊,射線BM為終邊的角xBM記為φ(0≤φ<2π),用表示點M的坐標,并求出C的普通方程;
(2)已知過C的左焦點F,且傾斜角為α(0≤α)的直線l1與C交于D,E兩點,過點F且垂直于l1的直線l2與C交于G,H兩點.當,|GH|,依次成等差數列時,求直線l2的普通方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐D-ABC中為銳角三角形,平面ACD⊥平面.
(1)求證:CD⊥平面ABC
(2)若直線BD與平面ACD所成角的正弦值為,求二面角D-AB-C的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com