13.等比數(shù)列中{an},a1,a5為方程x2-10x+16=0的兩根,則a3=( 。
A.4B.5C.±4D.±5

分析 由題意和韋達定理得:a1+a5=10,a1a5=16,判斷出a1,a5為正數(shù),由等比數(shù)列的性質和項的符號求出a3的值.

解答 解:∵a1,a5為方程x2-10x+16=0的兩根,
∴a1+a5=10,a1a5=16,則a1,a5為正數(shù),
在等比數(shù)列中{an}中,a32=a1a5=16,則a3=±4,
∵a1,a5為正數(shù),∴a3=4,
故選:A.

點評 本題考查等比數(shù)列的性質和項的符號,以及韋達定理的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知復數(shù)$z=\frac{a+i}{2-i}$(i 為虛數(shù)單位)的共軛復數(shù)在復平面內對應的點在第三象限,則實數(shù)a的取值范圍是( 。
A.$({-2,\frac{1}{2}})$B.$({-\frac{1}{2},2})$C.(-∞,-2)D.$({\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)y=f(x)滿足對任意x∈R都有f(x+2)=f(-x)成立,且函數(shù)y=f(x-1)的圖象關于點(1,0)對稱,f(1)=4,則f(2016)+f(2017)+f(2018)的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入x的值為2,則輸出的v值為( 。
A.9×210-2B.9×210+2C.9×211+2D.9×211-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知全集U=R,集合$A=\left\{{x|{2^x}>\frac{1}{2}}\right\},B=\left\{{x|{{log}_3}x<1}\right\}$,則A∩(∁UB)=( 。
A.(-1,+∞)B.[3,+∞)C.(-1,0)∪(3,+∞)D.(-1,0]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知△ABC中,$AC=2,AB=2\sqrt{7},cos∠BAC=\frac{{2\sqrt{7}}}{7}$且D是BC的中點,則中線AD的長為( 。
A.2B.4C.$2\sqrt{3}$D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.i為虛數(shù)單位,復數(shù)$\frac{3+i}{1-i}$的虛部是( 。
A.2iB.2C.-2iD.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.對于實數(shù)m>-3,若函數(shù)$y={(\frac{1}{2})^x}$圖象上存在點(x,y)滿足約束條件$\left\{\begin{array}{l}x-y+3≥0\\ x+2y+3≥0\\ x≤m\end{array}\right.$,則實數(shù)m 的最小值為( 。
A.$\frac{1}{2}$B.-1C.-$\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設x,y滿足約束條件$\left\{\begin{array}{l}{x≥y}\\{y≥4x-3}\\{x≥0,y≥0}\end{array}\right.$,若目標函數(shù)2z=2x+ny(n>0),z的最大值為2,則y=tan(nx+$\frac{π}{6}$)的圖象向右平移$\frac{π}{6}$后的表達式為( 。
A.y=tan(2x+$\frac{π}{6}$)B.y=tan(x-$\frac{π}{6}$)C.y=tan(2x-$\frac{π}{6}$)D.y=tan2x

查看答案和解析>>

同步練習冊答案