Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
20.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且tanC=34,c=-3bcosA.
(1)求tanB的值;
(2)若c=2,求△ABC的面積.

分析 (1)由正弦定理,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式化簡已知可得sinAcoB=-4sinBcosA,結(jié)合cosAcoB≠0,利用同角三角函數(shù)基本關(guān)系式,兩角和的正切函數(shù)公式即可解得得解tanB的值.
(2)由(1)利用同角三角函數(shù)基本關(guān)系式可求sinA=25,sinB=15,sinC=35,利用正弦定理可求a,進而利用三角形面積公式即可計算得解.

解答 解:(1)由正弦定理,得sinC=-3sinBcosA,
∵sinC=sin(A+B),
∴sin(A+B)=-3sinBcosA,sinAcosB+cosAsinB=-3sinBcosA,
即sinAcoB=-4sinBcosA,
∵cosAcoB≠0,
∴tanA=-4tanB,
又tanC=-tan(A+B)=tanA+tanBtanAtanB1=3tanB4tan2B+1=34,解得tanB=12
(2)由(1)知,sinA=25,sinB=15,sinC=35,
∵a=csinAsinC=453,
∴S△ABC=12acsinB=43

點評 本題主要考查了正弦定理,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,兩角和的正切函數(shù)公式,三角形面積公式在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=loga(x+2),g(x)=loga(2-x)(a>0,且a≠1)
(1)判斷函數(shù)f(x)+g(x)的奇偶性,并說明理由;
(2)求f(3)+g(3)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若x>0,y>0,且1x+3y=1,則x+3y的最小值為16;則xy的最小值為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=x3-3ax.
(Ⅰ)若函數(shù)f(x)在x=1處的切線斜率為2,求實數(shù)a;
(Ⅱ)若a=1,求函數(shù)f(x)在區(qū)間[0,3]的最值及所對應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若a=313,b=log43,則log3a=13,a與b的大小關(guān)系是a>b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若直線y=x+b與曲線y=3-4xx2有公共點,則b的取值范圍是( �。�
A.[1-2,1+2]B.[1-2,3]C.[1-22,3]D.[-1,1+2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知命題p:“若ac≥0,則二次方程ax2+bx+c=0沒有實根”,它的否命題為Q.
(Ⅰ)寫出命題Q;
(Ⅱ)判斷命題Q的真假,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.計算:a+-12(2a-\overrightarrow)=32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知橢圓C:x2a2+y22=1(a>b>0)的離心率為32,直線l與橢圓C交于A,B兩點,且線段AB的中點為M(-2,1),則直線l的斜率為( �。�
A.13B.32C.12D.1

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹