偶函數(shù)f(x)的定義域?yàn)镽,它在(0,+∞)是減函數(shù),則下列不等式中成立的是( 。
A.f(-
3
4
)>f(a2-a+1)
B.f(-
3
4
)≤f(a2-a+1)
C.f(-
3
4
)<f(a2-a+1)
D.f(-
3
4
)≥f(a2-a+1)
∵函數(shù)f(x)是偶函數(shù)
f(-
3
4
)=f(
3
4
)

又∵a2-a+1≥
3
4

f(
3
4
)≥f(a2-a+1)

f(-
3
4
)≥f(a2-a+1)

故選D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)定義在R上的偶函數(shù)f(x)的部分圖象如圖所示,則在(-2,0)上,下列函數(shù)中與f(x)的單調(diào)性不同的是(  )
A、y=x2+1
B、y=|x|+1
C、y=
2x+1,x≥0
x3+1,x<0
D、y=
ex,x≥0
e-x,x<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-
3
2
)與b=f(
15
2
)的大小關(guān)系為
a>b
a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的偶函數(shù)f(x)的最小值為1,當(dāng)x∈[0,+∞)時(shí),f(x)=aex
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求最大的整數(shù)m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤ex.(注:e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的偶函數(shù)f (x)的單調(diào)減區(qū)間為[0,+∞),則不等式f(x)<f(2-x)的解集是
(1,+∞)
(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)的最小值為3,且當(dāng)x≥0時(shí),f(x)=3ex+a(a為常數(shù)).
(1)求函數(shù)f(x)的解析式;
(2)求最大的整數(shù)m(m>1),使得存在實(shí)數(shù)t,對任意的x∈[1,m]都有f(x+t)<3ex.

查看答案和解析>>

同步練習(xí)冊答案