已知等差數(shù)列{an}的公差d=1,前n項(xiàng)和為Sn.
(1)若1,a1a3成等比數(shù)列,求a1
(2)若S5a1a9,求a1的取值范圍.
(1)a1=-1或a1=2(2)(-5,2)
(1)因?yàn)閿?shù)列{an}的公差d=1,且1,a1,a3成等比數(shù)列,所以a=1×(a1+2),
a1-2=0,解得a1=-1或a1=2.
(2)因?yàn)閿?shù)列{an}的公差d=1,且S5a1a9
所以5a1+10>+8a1,
+3a1-10<0,解得-5<a1<2.
a1的取值范圍為(-5,2).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

根據(jù)如圖所示的程序框圖,將輸出的x,y值依次分別記為x1,x2,…,xn,…,x2008;y1,y2,…,yn,…,y2008.

(1)求數(shù)列{xn}的通項(xiàng)公式.
(2)寫出y1,y2,y3,y4,由此猜想出數(shù)列{yn}的一個通項(xiàng)公式y(tǒng)n,并證明你的結(jié)論.
(3)求zn=x1y1+x2y2+…+xnyn(n∈N*,n≤2008).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”.已知數(shù)列中,,點(diǎn)在函數(shù)的圖象上,其中為正整數(shù).
(1)證明數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列;
(2)設(shè)(1)中“平方遞推數(shù)列”的前項(xiàng)積為,
,求;
(3)在(2)的條件下,記,求數(shù)列的前項(xiàng)和,并求使的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

己知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列的前n項(xiàng)和,若Tn¨對恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和滿足Sn>1,且6Sn=(an+1)(an+2),n∈N*.求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)為a1,且,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若=,設(shè)cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{2n-1·an}的前n項(xiàng)和Sn=1-.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1+a2=2(+),a3+a4+a5=64(++),
(1)求{an}的通項(xiàng)公式.
(2)設(shè)bn=(an+)2,求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列{an}中,a1=1,(n+1)an+1=nan(n∈N*),則該數(shù)列的通項(xiàng)公式an=________.

查看答案和解析>>

同步練習(xí)冊答案