已知a≥0,函數(shù)f(x)=(x2-2ax)ex.

(Ⅰ)當x為何值時,f(x)取得最小值?證明你的結論;

(Ⅱ)設f(x)在[-1,1]上是單調函數(shù),求a的取值范圍.

解:(Ⅰ)對函數(shù)f(x)求導數(shù),得

f(x)=(x2-2ax)ex+(2x-2a)ex=[x2+2(1-a)x-2a]ex,

f(x)=0,得

[x2+2(1-a)x-2a]ex=0,從而x2+1(1-a)x-2a=0.

解得x1=a-1-,x2=a-1+,其中x1<x2

當x變化時,f'(x),f(x)的變化如下表:

f(x)在x=x1處取得極大值,在x=x2處取得極小值.        

a≥0時,x1<-1,x2≥0,f(x)在(x1,x2)為減函數(shù),在(x2,+∞)為增函數(shù).

而當x<0時,f(x)=x(x-2a)ex>0;當x=0時,f(x)=0,

所以當x=a-1+時,f(x)取得最小值.        

(Ⅱ)當a≥0時,f(x)在[-1,1]上為單調函數(shù)的充要條件是x2≥1,

a-1+≥1,解得a,

綜上,f(x)在[-1,1]上為單調函數(shù)的充分必要條件為a≥,

a的取值范圍是[,+∞]

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a≥0,函數(shù)f(x)=(x2-2ax)ex
(Ⅰ)當x為何值時,f(x)取得最小值?證明你的結論;
(Ⅱ)設f(x)在[-1,1]上是單調函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a≠0,函數(shù)f(x)=
1
3
a2x3-ax2+
2
3
,g(x)=-ax+1,x∈R.
(I)求函數(shù)f(x)的單調遞減區(qū)間;
(Ⅱ)若在區(qū)間(0,
1
2
]
上至少存在一個實數(shù)x0,使f(x0)>g(x0)成立,試求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a≥0,函數(shù)f(x)=x2+ax.設x1∈(-∞,-
a
2
)
,記曲線y=f(x)在點M(x1,f(x1))處的切線為l,l與x軸的交點是N(x2,0),O為坐標原點.
(Ⅰ)證明:x2=
x
2
1
2x1+a

(Ⅱ)若對于任意的x1∈(-∞,-
a
2
)
,都有
OM
ON
9a
16
成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a≥0,函數(shù)f(x)=(x2-2ax)ex
(1)當a=0時討論函數(shù)的單調性;
(2)當x取何值時,f(x)取最小值,證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a≥0,函數(shù)f(x)=a2+
2
cos(x-
π
4
)+
1
2
sin2x
的最大值為
25
2
,則實數(shù)a的值是
12-2
2
12-2
2

查看答案和解析>>

同步練習冊答案