設(shè)函數(shù)f(x)=
x
3
 
-3a
x
2
 
+3bx
的圖象與直線12x+y-1=0相切于點(diǎn)(1,-11).
(I)求a,b的值;
(II)如果函數(shù)g(x)=f(x)+c有三個(gè)不同零點(diǎn),求c的取值范圍.
分析:(Ⅰ)函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值為切線斜率,切點(diǎn)在切線上,列方程組可解;
(Ⅱ)求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,從而可得函數(shù)的極值,要使函數(shù)g(x)=f(x)+c有三個(gè)不同零點(diǎn),只需函數(shù)的極值異號(hào),從而可得不等式,由此即可求得c的取值范圍.
解答:解:(I)求導(dǎo)得f′(x)=3x2-6ax+3b.
由于f(x)的圖象與直線12x+y-1=0相切于點(diǎn)(1,-11),
所以f(1)=-11,f′(1)=-12,即:
1-3a+3b=-11
3-6a+3b=-12
,解得:a=1,b=-3.
(II)由a=1,b=-3得:g′(x)=3x2-6x-9=3(x+1)(x-3)
令g′(x)>0,解得x<-1或x>3;令g′(x)<0,解得-1<x<3.
故當(dāng)x∈(-∞,-1)時(shí),g(x)是增函數(shù);當(dāng)x∈(-1,3)時(shí),g(x)是減函數(shù);
當(dāng)x∈(3,+∞)時(shí),g(x)是增函數(shù),
所以g(x)的極大值為5+c;g(x)的極小值為c-27
∵函數(shù)g(x)=f(x)+c有三個(gè)不同零點(diǎn),∴(5+c)(c-27)<0
∴-5<c<27
∴c的取值范圍為(-5,27).
點(diǎn)評(píng):本題考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,會(huì)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的增減性得到函數(shù)的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-
92
x2+6x-a
,
(1)對(duì)于任意實(shí)數(shù)x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個(gè)實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-(
12
)x-2
,則其零點(diǎn)所在區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-(
1
2
)x-2
,則其零點(diǎn)所在區(qū)間為(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-tx+
t-1
2
,t∈R

(I)試討論函數(shù)f(x)在區(qū)間[0,1]上的單調(diào)性:
(II)求最小的實(shí)數(shù)h,使得對(duì)任意x∈[0,1]及任意實(shí)數(shù)t,f(x)+|
t-1
2
|+h≥0
恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案