7.已知拋物線C:y2=4x的焦點(diǎn)為F,設(shè)過拋物線上一點(diǎn)P處的切線為l1,過點(diǎn)F且垂直于PF的直線為l2,則l1與l2交點(diǎn)Q的橫坐標(biāo)為(  )
A.-$\frac{3}{4}$B.-1C.-$\frac{4}{3}$D.不能確定

分析 不妨取P在第一象限,求出l1與l2方程,然后求解l1與l2交點(diǎn)Q的橫坐標(biāo).

解答 解:因?yàn)閽佄锞關(guān)于x軸對稱,拋物線的焦點(diǎn)F坐標(biāo)(1,0).
不妨取P在第一象限,設(shè)P(a,2$\sqrt{a}$),y=2${x}^{\frac{1}{2}}$,可得y′=${x}^{-\frac{1}{2}}$,曲線的斜率為:${a}^{-\frac{1}{2}}$,
P處的切線為l1的方程為:y-2$\sqrt{a}$=$\frac{1}{\sqrt{a}}$(x-a),
直線PF的斜率為:$\frac{2\sqrt{a}}{a-1}$,
直線l2的方程為:y=$\frac{1-a}{2\sqrt{a}}$(x-1).
$\left\{\begin{array}{l}{y-2\sqrt{a}=\frac{1}{\sqrt{a}}(x-a)}\\{y=\frac{1-a}{2\sqrt{a}}(x-1)}\end{array}\right.$,
消去y可得:$\frac{1-a}{2\sqrt{a}}(x-1)-2\sqrt{a}=\frac{1}{\sqrt{a}}(x-a)$,
化簡可得:(1+a)x=-a-1,
解得x=-1.
則l1與l2交點(diǎn)Q的橫坐標(biāo)為:-1.
故選:B.

點(diǎn)評 本題考查直線與拋物線的位置關(guān)系的應(yīng)用,曲線的切線方程的求法,考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.有甲、乙、丙、丁、戊5位同學(xué),求:
(1)5位同學(xué)站成一排,甲、戊不在兩端有多少種不同的排法?
(2)5位同學(xué)站成一排,要求甲乙必須相鄰,丙丁不能相鄰,有多少種不同的排法?
(3)將5位同學(xué)分配到三個(gè)班,每班至少一人,共有多少種不同的分配方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.△ABC中,D,E,F(xiàn)分別是AB,BC,AC的中點(diǎn),則$\overrightarrow{DF}$=( 。
A.$\overrightarrow{EF}+\overrightarrow{ED}$B.$\overrightarrow{EF}-\overrightarrow{DE}$C.$\overrightarrow{EF}+\overrightarrow{AD}$D.$\overrightarrow{EF}+\overrightarrow{AF}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)$f(x)=\frac{x}{1+|x|}$的圖象關(guān)于原點(diǎn)對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=4,a2+a4+a6=30,則S6=(  )
A.54B.44C.34D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列求導(dǎo)運(yùn)算正確的是 ( 。
A.(log2x)′=$\frac{1}{xln2}$B.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$
C.(cosx)′=sinxD.($\frac{{e}^{x}}{x}$)′=$\frac{x{e}^{x}+{e}^{x}}{{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.王剛同學(xué)衣服上左、右各有一個(gè)口袋,左邊口袋里裝有30個(gè)英語單詞卡片,右邊口袋里裝有20個(gè)英語單詞卡片,這些英語單詞卡片都互不相同,則從兩個(gè)口袋里任取一張英語單詞卡片,不同取法的種數(shù)為( 。
A.20B.30C.50D.600

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=-$\frac{1}{2}$cos2x-sinx-$\frac{1}{4}$,x∈R.
(1)求不等式f(x)≤0的解集;
(2)討論函數(shù)f(x)在[0,2π]的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某醫(yī)學(xué)科研所對人體脂肪含量與年齡這兩個(gè)變量研究得到一組隨機(jī)樣本數(shù)據(jù),運(yùn)用Excel軟件計(jì)算得$\widehat{y}$=0.577x-0.448(x為人的年齡,y(單位:%)為人體脂肪含量).對年齡為37歲的人來說,下面說法正確的是( 。
A.年齡為37歲的人體內(nèi)脂肪含量都為20.90%
B.年齡為37歲的人體內(nèi)脂肪含量為21.01%
C.年齡為37歲的人群中的大部分人的體內(nèi)脂肪含量為20.90%
D.年齡為37歲的大部分的人體內(nèi)脂肪含量為31.50%

查看答案和解析>>

同步練習(xí)冊答案