【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系.已知點(diǎn)軌跡的參數(shù)方程為,為參數(shù)),點(diǎn)在曲線(xiàn)上.

(1)求點(diǎn)軌跡的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)求的最大值.

【答案】(1) 曲線(xiàn)的直角坐標(biāo)方程為;(2) .

【解析】分析:(1)消去參數(shù),即可得普通方程,注意變量的范圍;

(2)點(diǎn)在曲線(xiàn)上,化為直角方程即為圓,數(shù)形結(jié)合利用圓和線(xiàn)段的關(guān)系求最值即可.

詳解:

(1)由消去參數(shù),得.

,∴.

故點(diǎn)軌跡的變通方程是.

,∴,∴,即.

故曲線(xiàn)的直角坐標(biāo)方程為.

(2)如圖:

由題意可得,點(diǎn)在線(xiàn)段上,點(diǎn)在圓上,

∵圓的圓心到直線(xiàn)的距離,

∴直線(xiàn)與圓相切,且切點(diǎn)為.

易知線(xiàn)段上存在一點(diǎn)

則點(diǎn)與圓心的連線(xiàn),與圓的交點(diǎn)滿(mǎn)足取最大值.

即當(dāng)點(diǎn)坐標(biāo)為時(shí),取最大值.

,

的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市化工廠(chǎng)三個(gè)車(chē)間共有工人1 000名,各車(chē)間男、女工人數(shù)如下表:

第一車(chē)間

第二車(chē)間

第三車(chē)間

女工

173

100

y

男工

177

x

z

已知在全廠(chǎng)工人中隨機(jī)抽取1名,抽到第二車(chē)間男工的可能性是0. 15.

(1)求x的值;

(2)現(xiàn)用分層抽樣的方法在全廠(chǎng)抽取50名工人,問(wèn)應(yīng)在第三車(chē)間抽取多少名?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)fx),若fx0=x0,則稱(chēng)x0fx)的不動(dòng)點(diǎn),若f[fx0]=x0,則稱(chēng)x0fx)的穩(wěn)定點(diǎn),函數(shù)fx)的不動(dòng)點(diǎn)穩(wěn)定點(diǎn)的集合分別記為AB,即A={x|fx=x}B={x|f[fx]=x},那么:

1)函數(shù)gx=x2-2不動(dòng)點(diǎn)______

2)集合A與集合B的關(guān)系是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C以坐標(biāo)軸為對(duì)稱(chēng)軸,以坐標(biāo)原點(diǎn)為對(duì)稱(chēng)中心,橢圓的一個(gè)焦點(diǎn)為,點(diǎn)在橢圓上,

求橢圓C的方程.

斜率為k的直線(xiàn)l過(guò)點(diǎn)F且不與坐標(biāo)軸垂直,直線(xiàn)l交橢圓于A、B兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)與x軸交于點(diǎn)G,求點(diǎn)G橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn),軸上,且在拋物線(xiàn)的準(zhǔn)線(xiàn)上,點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值為.

1)求橢圓的方程;

2)過(guò)焦點(diǎn),作兩條平行直線(xiàn)分別交橢圓,,,四個(gè)點(diǎn).求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線(xiàn)交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的三個(gè)頂點(diǎn)落在半徑為的球的表面上,三角形有一個(gè)角為且其對(duì)邊長(zhǎng)為3,球心所在的平面的距離恰好等于半徑的一半,點(diǎn)為球面上任意一點(diǎn),則三棱錐的體積的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;

2)當(dāng)時(shí),若對(duì)任意的、,恒成立,求實(shí)數(shù)的取值范圍;

3)若函數(shù)上的值城為區(qū)間,是否存在常數(shù),使得區(qū)間的長(zhǎng)度為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.(注:區(qū)間的長(zhǎng)度為).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若函數(shù)處取得極大值,求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案