已知函數(shù).
(1)是否存在點,使得函數(shù)的圖像上任意一點P關(guān)于點M對稱的點Q也在函數(shù)的圖像上?若存在,求出點M的坐標;若不存在,請說明理由;
(2)定義,其中,求;
(3)在(2)的條件下,令,若不等式對且恒成立,求實數(shù)的取值范圍.
(1)存在,且點的坐標為;(2);(3)的取值范圍是.
【解析】
試題分析:(1)先假設點的坐標,根據(jù)圖象對稱的定義列式求出點的坐標即可;(2)利用(1)中條件的條件,并注意到定義中第項與倒數(shù)第項的和這一條件,并利用倒序相加法即可求出的表達式,進而可以求出的值;(3)先利用和之間的關(guān)系求出數(shù)列的通項公式,然后在不等式中將與含的代數(shù)式進行分離,轉(zhuǎn)化為恒成立的問題進行處理,最終利用導數(shù)或作差(商)法,通過利用數(shù)列的單調(diào)性求出的最小值,最終求出實數(shù)的取值范圍.
試題解析:(1)假設存在點,使得函數(shù)的圖像上任意一點P關(guān)于點M對稱的點Q也在函數(shù)的圖像上,則函數(shù)圖像的對稱中心為.
由,得,
即對恒成立,所以解得
所以存在點,使得函數(shù)的圖像上任意一點關(guān)于點M對稱的點也在函數(shù)的圖像上.
(2)由(1)得.
令,則.
因為①,
所以②,
由①+②得,所以.
所以.
(3)由(2)得,所以.
因為當且時,.
所以當且時,不等式恒成立.
設,則.
當時,,在上單調(diào)遞減;
當時,,在上單調(diào)遞增.
因為,所以,
所以當且時,.
由,得,解得.
所以實數(shù)的取值范圍是.
考點:函數(shù)的對稱性、倒序相加法、導數(shù)
科目:高中數(shù)學 來源: 題型:
π |
6 |
A、f(x)是最小正周期為π的偶函數(shù) | ||||
B、f(x)的一條對稱軸是x=
| ||||
C、f(x)的最大值為2 | ||||
D、將函數(shù)y=
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2+2x-3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:044
(2007
湖南,16)已知函數(shù),.(1)
設是函數(shù)y=f(x)圖象的一條對稱軸,求的值;(2)
求函數(shù)h(x)=f(x)+g(x)的單調(diào)遞增區(qū)間.查看答案和解析>>
科目:高中數(shù)學 來源:2010年遼寧省高一上學期10月月考數(shù)學卷 題型:選擇題
已知函數(shù)在[0,1]上是減函數(shù),則a的取值范圍是( )
A. B.(1,2) C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com