已知是空間中兩條不同的直線,,是空間中三個不同的平面,則下列命題正確的序號是   
①若,,則;  ②若,則;
③若,,則;   ④若,,則

試題分析:因為,所以內(nèi)任一直線,而,所以內(nèi)任一直線,因此,①正確,當時,也能滿足,,因此②錯誤,當的交線時,也能滿足,,因此③錯誤,當的交線垂直于,也能滿足,,因此④錯誤.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)(2011•天津)如圖,在四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC中點,PO⊥平面ABCD,PO=2,M為PD中點.

(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)證明:AD⊥平面PAC;
(Ⅲ)求直線AM與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知正四棱柱中,的中點.
(1)求證:平面
(2)求證:;
(3)在線段上是否存在點,當時,平面平面?若存在,求出的值并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

等邊三角形的邊長為3,點、分別是邊、上的點,且滿足(如圖1).將△沿折起到△的位置,使二面角成直二面角,連結(jié)、 (如圖2).
(1)求證:平面
(2)在線段上是否存在點,使直線與平面所成的角為?若存在,求出的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,,底面

(1)證明:;
(2)若,求二面角余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面是邊長為1的正方形,,點E在棱PB上.

(1)求證:平面;
(2)當且E為PB的中點時,求AE與平面PDB
所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD與四邊形都為正方形,,F(xiàn)
為線段的中點,E為線段BC上的動點.

(1)當E為線段BC中點時,求證:平面AEF;
(2)求證:平面AEF平面;
(3)設(shè),寫出為何值時MF⊥平面AEF(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知三棱柱ABCA1B1C1,

(1)若M、N分別是AB,A1C的中點,求證:MN∥平面BCC1B1;
(2)若三棱柱ABCA1B1C1的各棱長均為2,∠B1BA=∠B1BC=60°,P為線段B1B上的動點,當PA+PC最小時,求證:B1B⊥平面APC.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)m、n是不同的直線,α、β是不同的平面,下列四個命題中正確的是(  )
A.若m∥α,n∥α,則m∥n
B.若m⊥β,n⊥β,則m∥n
C.若α⊥β,m?α,則m⊥β
D.若m?α,n?α,m∥β,n∥β,則α∥β

查看答案和解析>>

同步練習冊答案