20.已知sin(α+$\frac{π}{6}}$)=$\frac{4}{5}$,且α∈(0,$\frac{π}{3}$),則sinα的值是( 。
A.$-\frac{{2\sqrt{3}}}{5}$B.$\frac{{2\sqrt{3}}}{5}$C.$\frac{{4\sqrt{3}-3}}{10}$D.$\frac{{4\sqrt{3}+3}}{10}$

分析 依題意,可求得cos(α+$\frac{π}{6}$)的值,再利用兩角差的正弦可求得sinα=sin[(α+$\frac{π}{6}$)-$\frac{π}{6}$]的值.

解答 解:sin(α+$\frac{π}{6}}$)=$\frac{4}{5}$,且α∈(0,$\frac{π}{3}$),
故cos(α+$\frac{π}{6}$)=$\sqrt{1{-cos}^{2}(α+\frac{π}{6})}$=$\frac{3}{5}$,
則sinα=sin[(α+$\frac{π}{6}$)-$\frac{π}{6}$]=sin(α+$\frac{π}{6}}$)cos$\frac{π}{6}$-cos(α+$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{4}{5}$•$\frac{\sqrt{3}}{2}$-$\frac{3}{5}$•$\frac{1}{2}$=$\frac{4\sqrt{3}-3}{10}$.
故選:C.

點評 本題考查三角函數(shù)的化簡求值,突出考查兩角差的正弦,考查化歸思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.△ABC的三個內(nèi)角為A,B,C,若$\frac{{\sqrt{3}sinA+cosA}}{{\sqrt{3}cosA-sinA}}=tan\frac{5π}{12}$,則sin(B+C)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某市出租車的計價標準是:4km以內(nèi)10元(含4km),超過4km且不超過18km的部分1.2元/km;超出18km的部分1.8元/km.
(1)如果不計等待時間的費用,建立車費y與行車里程x的函數(shù)關系;
(2)某人乘車付了30.4元車費,問他乘車行駛了多少km?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.(1)-3x2+x+1>0的解集是($\frac{1-\sqrt{13}}{6}$,$\frac{1+\sqrt{13}}{6}$);
(2)x2-2x+1≤0的解集是{1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.執(zhí)行如圖的程序框圖,若輸入的x的值為1,則輸出的y的值是( 。
A.4B.13C.16D.28

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知數(shù)列{an}滿足a1=4,an+2an+1=6,則a4=( 。
A.1B.$\frac{5}{2}$C.$\frac{7}{4}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在正三棱柱ABC-A1B1C1中,點D是棱AB的中點,BC=1,AA1=$\sqrt{3}$.
(1)求證:BC1∥平面A1DC;
(2)求二面角D-A1C-A的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.某幾何體的三視圖所示(單位:cm),則該幾何體的體積為(  )
A.5B.6C.7D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.數(shù)列{an}的通項公式an=$\frac{1}{{\sqrt{n}+\sqrt{n+1}}}$,若前n項的和為10,則n=120.

查看答案和解析>>

同步練習冊答案