【題目】已知函數(shù)),.

(1)若的圖象在處的切線恰好也是圖象的切線.

①求實數(shù)的值;

②若方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍.

(2)當(dāng)時,求證:對于區(qū)間上的任意兩個不相等的實數(shù), ,都有成立.

【答案】(1)①, ;(2)詳見解析

【解析】試題分析:(1①首先求函數(shù)的圖象在處的切線, , ,又因為切點為,所以切線方程為,于是問題轉(zhuǎn)化為直線與函數(shù)圖象相切,于是可以根據(jù)直線與拋物線相切進(jìn)行解題;②問題轉(zhuǎn)化為方程在區(qū)間內(nèi)有唯一實數(shù)解,參變量分離得,設(shè), ,研究的單調(diào)性、極值,轉(zhuǎn)化為直線有且只有一個交點,2)當(dāng)時, 上單調(diào)遞增, 上單調(diào)遞增,設(shè),則, ,于是問題轉(zhuǎn)化為,構(gòu)造函數(shù),通過函數(shù)上單調(diào)遞減,可以求出的取值范圍.

試題解析:①,∴, ,切點為,

∴切線方程為,即,

聯(lián)立,消去,可得 ,

②由,得

設(shè), ,則問題等價于的圖象在上有唯一交點,

,∴, ,函數(shù)單調(diào)遞增, ,函數(shù)單調(diào)遞減,

,且時, ,

證明:(2)不妨設(shè),則, ,

可化為

設(shè),即,∴上單調(diào)遞減,

恒成立,即上恒成立,

,∴

從而,當(dāng)時,命題成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3-3ax+e,g(x)=1-lnx,其中e為自然對數(shù)的底數(shù).

(I)若曲線y=f(x)在點(1,f(1))處的切線與直線l:x+2y=0垂直,求實數(shù)a的值;

(II)設(shè)函數(shù)F(x)=-x[g(x)+x-2],若F(x)在區(qū)間(m,m+1)(m∈Z)內(nèi)存在唯一的極值點,求m的值;

(III)用max{m,n}表示m,n中的較大者,記函數(shù)h(x)=max{f(x),g(x)}(x>0). 若函數(shù)h(x)在(0,+∞)上恰有2個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】畫出下列函數(shù)的圖像,并根據(jù)圖像說出函數(shù)y=f(x)的單調(diào)區(qū)間,以及在各單調(diào)區(qū)間上函數(shù)y=f(x)是增函數(shù)還是減函數(shù)。

(1)y=x2-5x-6; (2)y=|4-x2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象的一條切線為軸.(1)求實數(shù)的值;(2)令,若存在不相等的兩個實數(shù)滿足,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列滿足:,該數(shù)列的前三項分別加上1,1,3后成等比數(shù)列,且.

(1)求數(shù)列,的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線 ,以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線 .

(1)將曲線上的所有點的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的、2倍后得到曲線,求的參數(shù)方程;

(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,BA=BC,以AB為直徑的⊙O分別交ACBC于點D、E,BC的延長線于⊙O的切線AF交于點F

(1)求證:∠ABC=2∠CAF;

(2)若,CEEB=1∶4,求CE的長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以原點為圓心,橢圓的長半軸長為半徑的圓與直線相切.

)求橢圓的標(biāo)準(zhǔn)方程;

)已知點,為動直線與橢圓的兩個交點,問:在軸上是否存在定點,使得為定值?若存在,試求出點的坐標(biāo)和定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形的對角線交于點,邊所在直線的方程為,點在邊所在的直線上.

(1)求矩形的外接圓的方程;

(2)已知直線),求證:直線與矩形的外接圓恒相交,并求出相交的弦長最短時的直線的方程.

查看答案和解析>>

同步練習(xí)冊答案