【題目】下列四個(gè)命題:

①若,則

②函數(shù),的最小值是3

③用長為的鐵絲圍成--個(gè)平行四邊形,則該平行四邊形能夠被直徑為的圓形紙片完全覆蓋

④已知正實(shí)數(shù),滿足,則的最小值為.

其中所有正確命題的序號(hào)是__________

【答案】①③④

【解析】

利用不等式的性質(zhì)即可得出;

②取特殊值可排除②;

③利用余弦定理及基本不等式判斷;

④利用基本不等式可證.

解:對(duì)于①,,

,,,

,

,

同除

同除

綜上得,故①正確;

對(duì)于②,,故②錯(cuò)誤;

對(duì)于③,設(shè)平行四邊形的一組鄰邊分別為夾角為,,

則對(duì)角線為

所以平行四邊形的任何一邊及對(duì)角線都小于,該平行四邊形能夠被直徑為的圓形紙片完全覆蓋,故③正確;

對(duì)于④,正實(shí)數(shù),滿足,則

所以

當(dāng)且僅當(dāng)取等號(hào),故④正確;

故答案為:①③④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)的動(dòng)直線與圓相交于、兩點(diǎn),中點(diǎn),與直線為常數(shù))相交于點(diǎn).

1)求證:當(dāng)垂直時(shí),必過圓心;

2)當(dāng)時(shí),求直線的方程;

3)當(dāng)直線的傾斜角變化時(shí),探索的值是否為常數(shù)?若是,求出該常數(shù);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,四點(diǎn)中恰有三點(diǎn)在橢圓上.

1)求橢圓C的方程

2)橢圓C上是否存在不同的兩點(diǎn)M,N關(guān)于直線對(duì)稱?若存在,請(qǐng)求出直線MN的方程,若不存在,請(qǐng)說明理由.

3)設(shè)直線l不經(jīng)過點(diǎn)且與C相交于A,B兩點(diǎn),若直線與直線的斜率之和為1,求證直線l必過定點(diǎn),并求出這個(gè)定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知項(xiàng)數(shù)為項(xiàng)的有窮數(shù)列,若同時(shí)滿足以下三個(gè)條件:

為正整數(shù);或1,其中,3,;

任取數(shù)列中的兩項(xiàng),,剩下的項(xiàng)中一定存在兩項(xiàng),,滿足,則稱數(shù)列數(shù)列.

若數(shù)列是首項(xiàng)為1,公差為1,項(xiàng)數(shù)為6項(xiàng)的等差數(shù)列,判斷數(shù)列是否是數(shù)列,并說明理由.

當(dāng)時(shí),設(shè)數(shù)列中1出現(xiàn)次,2出現(xiàn)次,3出現(xiàn)次,其中,

求證:,

當(dāng)時(shí),求數(shù)列中項(xiàng)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為連續(xù)10天,每天新增疑似病例不超過7”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是

A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0

C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為:為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線l的極坐標(biāo)方程為

將圓C的參數(shù)方程化為極坐標(biāo)方程;

設(shè)點(diǎn)A的直角坐標(biāo)為,射線l與圓C交于點(diǎn)不同于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高考改革是教育體制改革中的重點(diǎn)領(lǐng)域和關(guān)鍵環(huán)節(jié),全社會(huì)極其關(guān)注.近年來,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目語文、數(shù)學(xué)、外語,“”指考生根據(jù)本人興趣特長和擬報(bào)考學(xué)校及專業(yè)的要求,從物理、化學(xué)、生物、歷史、政治、地理六科中選擇門作為選考科目,其中語、數(shù)、外三門課各占分,選考科目成績采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級(jí)并以此打分得到最后得分.假定省規(guī)定:選考科目按考生成績從高到低排列,按照占總體的,以此賦分分、分、分、分.為了讓學(xué)生們體驗(yàn)“賦分制”計(jì)算成績的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單科全班排名,每名學(xué)生選三科計(jì)算成績),已知這次摸底考試中的物理成績(滿分分)頻率分布直方圖,化學(xué)成績(滿分分)莖葉圖如下圖所示,小明同學(xué)在這次考試中物理分,化學(xué)多分.

(1)求小明物理成績的最后得分;

(2)若小明的化學(xué)成績最后得分為分,求小明的原始成績的可能值;

(3)若小明必選物理,其他兩科在剩下的五科中任選,求小明此次考試選考科目包括化學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)安排4名畢業(yè)生到某企業(yè)的三個(gè)部門實(shí)習(xí),要求每個(gè)部門至少安排1人,其中甲大學(xué)生不能安排到部門工作,安排方法有______用數(shù)字作答

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)棱柱是正四棱柱的充要條件是(

A.底面是正方形,有兩個(gè)側(cè)面是矩形B.底面是正方形,有兩個(gè)側(cè)面垂直底面

C.底面是正方形,相鄰兩個(gè)側(cè)面是矩形D.每個(gè)側(cè)面都是全等的矩形

查看答案和解析>>

同步練習(xí)冊(cè)答案