精英家教網 > 高中數學 > 題目詳情

【題目】橢圓C 的左、右頂點分別為A1、A2,點PC上且直線PA2的斜率的取值范圍是[-2,-1],那么直線PA1斜率的取值范圍是________.

【答案】

【解析】由題意可得,A1(-2,0),A2(2,0),

PA2的斜率為-2時,直線PA2的方程為y=-2(x-2),

代入橢圓方程,消去y化簡得19x2-64x+52=0,

解得x=2或x.

PA2的斜率存在可得點P,

此時直線PA1的斜率k.

同理,當直線PA2的斜率為-1時,

直線PA2的方程為y=-(x-2),

代入橢圓方程,消去y化簡得7x2-16x+4=0,解得x=2或x

PA2的斜率存在可得點P,

此時直線PA1的斜率k.

數形結合可知,直線PA1斜率的取值范圍是

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論上的單調性;

(2)是否存在實數a,使得上的最大值為,若存在,求滿足條件的a的個數;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程是為參數),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)寫出曲線的直角坐標方程;

(2)設點、分別在上運動,若的最小值為1,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率,過且與軸垂直的直線與橢圓在第一象限內的交點為,且.

(1)求橢圓的方程;

(2)過點的直線交橢圓兩點,當時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直角三角形中,的中點,是線段上一個動點,且,如圖所示,沿翻折至,使得平面平面

(1)當時,證明:平面

(2)是否存在,使得與平面所成的角的正弦值是?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】不等式的解集為,若,則實數的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知中心在原點O,左焦點為F1(-1,0)的橢圓C的左頂點為A,上頂點為B,F1到直線AB的距離為|OB|.

(1)求橢圓C的方程;

(2)如圖,若橢圓,橢圓,則稱橢圓C2是橢圓C1λ倍相似橢圓.已知C2是橢圓C的3倍相似橢圓,若橢圓C的任意一條切線l交橢圓C2于兩點M、N,試求弦長|MN|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,長方體中, , ,點, , 分別為, , 的中點,過點的平面與平面平行,且與長方體的面相交,交線圍成一個幾何圖形.

(1)在圖中畫出這個幾何圖形(說明畫法,不需要說明理由);

(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的圖象與軸正半軸交點的橫坐標依次構成一個公差為的等差數列,把函數的圖象沿軸向右平移個單位,得到函數的圖象,則下列敘述不正確的是( )

A. 的圖象關于點對稱 B. 的圖象關于直線對稱

C. 上是增函數 D. 是奇函數

查看答案和解析>>

同步練習冊答案