把極坐標(biāo)方程ρ=2sin(+θ)化為直角坐標(biāo)方程為          .
(x-)2+(y-)2=1

試題分析:ρ=2sin(+θ)即,所以答案為:(x-)2+(y-)2=1。
點評:簡單題,互化依據(jù):。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,已知點,則、兩點間的距離是       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系(ρ,)()中,曲線的交點的極坐標(biāo)為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,直線的位置關(guān)系是         _

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1) 在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為為參數(shù)),M為上的動點,P點滿足,點P的軌跡為曲線.已知在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點的交點為A,與的異于極點的交點為B,求|AB|.
(2) 某旅游景點給游人準(zhǔn)備了這樣一個游戲,他制作了“迷尼游戲板”:在一塊傾斜放置的矩形膠合板上釘著一個形如“等腰三角形”的八行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個鐵釘之間有1個空隙,第2行3個鐵釘之間有2個空隙,…,第8行9個鐵釘之間有8個空隙(如圖所示).東方莊家的游戲規(guī)則是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付給莊家2元.若小球到達(dá)①②③④號球槽,分別獎4元、2元、0元、-2元.(一個玻璃球的滾動方式:通過第1行的空隙向下滾動,小球碰到第二行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙.以后小球按類似方式繼續(xù)往下滾動,落入第8行的某一個空隙后,最后掉入迷尼板下方的相應(yīng)球槽內(nèi)).恰逢周末,某同學(xué)看了一個小時,留心數(shù)了數(shù),有80人次玩.試用你學(xué)過的知識分析,這一小時內(nèi)游戲莊家是贏是賠? 通過計算,你得到什么啟示?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點,則它的極坐標(biāo)是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,點的極坐標(biāo)是,曲線C的極坐標(biāo)方程為
(I)求點的直角坐標(biāo)和曲線C的直角坐標(biāo)方程;
(II)若經(jīng)過點的直線與曲線C交于A、B兩點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點x軸的正半軸為極軸建立極坐標(biāo)系, 曲線C1的極坐標(biāo)方程為:
(I)求曲線C1的普通方程;
(II)曲線C2的方程為,設(shè)P、Q分別為曲線C1與曲線C2上的任意一點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

極坐標(biāo)方程化為直角坐標(biāo)方程是        .

查看答案和解析>>

同步練習(xí)冊答案