【題目】已知的三個內(nèi)角,,所對的邊分別為,設(shè),.
(1)若,求與的夾角;
(2)若,求周長的最大值.
【答案】(1)(2)
【解析】
(1)將代入可求得.根據(jù)平面向量數(shù)量積的坐標運算求得,由數(shù)量積的定義即可求得,進而得夾角.
(2)根據(jù)及向量模的坐標表示,可求得.再由余弦定理可得.結(jié)合基本不等式即可求得的最大值,即可求得周長的最大值;或由正弦定理,用角表示出,結(jié)合輔助角公式及角的取值范圍,即可求得的取值范圍,進而求得周長的最大值.
(1),所以,
因為,
,
又,,
,
,
(2)因為,即,
所以,
方法1.由余弦定理,得.
,
即,
即,(當且僅當時取等號)
所以周長的最大值為.
方法2.由正弦定理可知,
,
,,
所以,
又,,
,
,
所以當時,取最大值.
所以周長的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)求的極值;
(2)若對任意的,當時,恒成立,求實數(shù)的最大值;
(3)若函數(shù)恰有兩個不相等的零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,橢圓C:的離心率是,拋物線E:的焦點F是C的一個頂點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是E上的動點,且位于第一象限,E在點P處的切線與C交與不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M.
(i)求證:點M在定直線上;
(ii)直線與y軸交于點G,記的面積為,的面積為,求的最大值及取得最大值時點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點,圓,點為圓上動點,線段的垂直平分線交于點,記的軌跡為曲線.
(1)求曲線的方程;
(2)過點與作平行直線和,分別交曲線于點、和點、,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】狄利克雷函數(shù)是高等數(shù)學中的一個典型函數(shù),若,則稱為狄利克雷函數(shù).對于狄利克雷函數(shù),給出下面4個命題:①對任意,都有;②對任意,都有;③對任意,都有, ;④對任意,都有.其中所有真命題的序號是( )
A. ①④ B. ②③ C. ①②③ D. ①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學著作《算法統(tǒng)宗》中記載了這樣的一個問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還”,其大意為:有一個人走了378里路,第一天健步行走,從第二天起其因腳痛每天走的路程為前一天的一半,走了6天后到達了目的地,問此人第三天走的路程里數(shù)為( )
A.192B.48C.24D.88
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com