17.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,當(dāng)n≥2時(shí),2Sn=(n+1)an-2.
(Ⅰ)求a2,a3和通項(xiàng)an;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=an•2n-1,求{bn}的前n項(xiàng)和Tn

分析 (I)a1=1,當(dāng)n≥2時(shí),2Sn=(n+1)an-2.可得2(1+a2)=3a2-2,解得a2,a3.當(dāng)n≥3時(shí),2an=2(Sn-Sn-1),化為:$\frac{{a}_{n}}{n}=\frac{{a}_{n-1}}{n-1}$.即可得出.
(Ⅱ)由(I)可知,bn=an•2n-1,bn=$\left\{\begin{array}{l}{1,n=1}\\{n•{2}^{n},n≥2}\end{array}\right.$.即可得出.

解答 解:(I)a1=1,當(dāng)n≥2時(shí),2Sn=(n+1)an-2.∴2(1+a2)=3a2-2,解得a2=4.
同理可得:a3=6.當(dāng)n≥3時(shí),2an=2(Sn-Sn-1)=(n+1)an-2-(nan-1-2),化為:$\frac{{a}_{n}}{n}=\frac{{a}_{n-1}}{n-1}$.
∵$\frac{{a}_{3}}{3}=\frac{{a}_{2}}{2}$=2,a1=1,∴$\frac{{a}_{n}}{n}=\frac{{a}_{n-1}}{n-1}$=…=$\frac{{a}_{2}}{2}$=2.
∴n≥2時(shí),an=2n.故an=$\left\{\begin{array}{l}{1,n=1}\\{2n,n≥2}\end{array}\right.$.
(Ⅱ)由(I)可知,bn=an•2n-1,bn=$\left\{\begin{array}{l}{1,n=1}\\{n•{2}^{n},n≥2}\end{array}\right.$.
所以當(dāng)n=1時(shí),Tn=b1=1.
當(dāng)n≥2時(shí),Tn=b1+b2+…+bn=1+2×22+3×23+…+n•2n,
則2Tn=2+2×23+…+(n-1)•2n+n•2n+1,
作差得:-Tn=1+2+(22+23+24+…+2n)-n•2n+1=1+$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1=(1-n)•2n+1-1,
∴Tn=(n-1)•2n+1+1,n∈N*.(n=1時(shí)也成立).

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式、“錯(cuò)位相減法”方法、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知集合P={x|2≤x≤3},Q={x|x2≤4},則P∪Q=( 。
A.(-2,3]B.[-2,3]C.[-2,2]D.(-∞,-2]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.己知圓M (x+1)2+y2=64,定點(diǎn)N(1,0),點(diǎn)P為圓M上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在線段MP上,且滿足$\overrightarrow{NP}$=2$\overrightarrow{NQ}$,$\overrightarrow{GQ}$•$\overrightarrow{NP}$=0,則點(diǎn)G的軌跡方程是( 。
A.$\frac{{x}^{2}}{15}$+$\frac{{y}^{2}}{14}$=1B.$\frac{{x}^{2}}{17}$+$\frac{{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1D.$\frac{{x}^{2}}{14}$+$\frac{{y}^{2}}{13}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.“直線l的方程為y=k(x-2)”是“直線l經(jīng)過(guò)點(diǎn)(2,0)”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.一個(gè)直三棱柱的三視圖如圖所示,則該三棱柱的體積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,D,E分別為AC1和BB1的中點(diǎn).
(Ⅰ)求證:DE∥平面ABC;
(Ⅱ)若F為AB中點(diǎn),求三棱錐F-C1DE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知命題p:函數(shù)y=3-ax+1的圖象恒過(guò)定點(diǎn)(1,3);命題q:若函數(shù)y=f(x-3)為偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=3對(duì)稱,則下列命題為真命題的是( 。
A.p∨qB.p∧qC.¬p∧qD.p∨¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在復(fù)平面內(nèi),復(fù)數(shù)z的對(duì)應(yīng)點(diǎn)為(1,1),則z2=( 。
A.$\sqrt{2}$B.2iC.$-\sqrt{2}$D..2+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)集合A={-2,-1,0,1,2},B={x|x>-1},則A∩B=( 。
A.{0,1}B.{-1,0}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

同步練習(xí)冊(cè)答案