已知在等差數(shù)列{an}中,a3+a6+a10+a13=32,則a8=(  )
A、12B、8C、6D、4
考點(diǎn):等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的性質(zhì)易得a3+a13=a6+a10=2a8,代入已知求解可得.
解答: 解:由等差數(shù)列的性質(zhì)可得a3+a13=a6+a10=2a8
∵a3+a6+a10+a13=32,∴4a8=32
解得a8=8
故選:B
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出由下述各命題構(gòu)成的“p或q”,“p且q”,“非p”形式的命題,并指出所構(gòu)成的這些命題的真假.
(1)p:連續(xù)的三個(gè)整數(shù)的乘積能被2整除,q:連續(xù)的三個(gè)整數(shù)的乘積能被3整除;
(2)p:對(duì)角線互相垂直的四邊形是菱形,q:對(duì)角線互相平分的四邊形是菱形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知橢圓過(guò)點(diǎn)P(0,3)且a=3b,求橢圓的標(biāo)準(zhǔn)方程;
(2)焦點(diǎn)在x軸上的雙曲線過(guò)點(diǎn)P(4
2
,-3)
,且點(diǎn)Q(0,5)與兩焦點(diǎn)的連線相互垂直,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x2-x+2)5的展開(kāi)式中x3的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x+5y-6=0,則42x+y8y-x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

菱形ABCD,邊長(zhǎng)為1,E為CD的中點(diǎn),O為兩對(duì)角線交點(diǎn),則
OD
OE
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
2x-1
的值域?yàn)?nbsp; (  )
A、[-1,+∞)
B、(-∞,-1]
C、(-1,-∞)
D、[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

老師在班級(jí)50名學(xué)生中,依次抽取班號(hào)為4,14,24,34,44的學(xué)生進(jìn)行作業(yè)檢查,老師運(yùn)用的抽樣方法是( 。
A、隨機(jī)數(shù)法B、抽簽法
C、系統(tǒng)抽樣D、以上都是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x∈R|-3≤x≤4},B={x∈R|log2x≥1},則A∩B=( 。
A、[4,+∞)
B、(4,+∞)
C、[2,4)
D、[2,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案