已知實數(shù)a滿足1<a≤2,設函數(shù)f (x)=x3x2+a x.

(Ⅰ) 當a=2時,求f (x)的極小值;

(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x  (b∈R) 的極小值點與f (x)的極小值點相同,

求證:g(x)的極大值小于或等于10.

 

【答案】

(Ⅰ) 極小值為f (2)= (Ⅱ)證明如下

【解析】

試題分析:(Ⅰ)解:當a=2時,f ′(x)=x2-3x+2=(x-1)(x-2).

列表如下:

x

(-,1)

1

(1,2)

2

(2,+)

f ′(x)

0

0

f (x)

單調遞增

極大值

單調遞減

極小值

單調遞增

所以,f (x)的極小值為f (2)=.              

(Ⅱ) 解:f ′ (x)=x2-(a+1)x+a=(x-1)(x-a).

由于a>1,所以f (x)的極小值點x=a,則g(x)的極小值點也為x=a.

而g′ (x)=12x2+6bx-6(b+2)=6(x-1)(2x+b+2),所以,

即b=-2(a+1).

又因為1<a≤2,所以  g(x)極大值=g(1)=4+3b-6(b+2)=-3b-8=6a-2≤10.

故g(x)的極大值小于或等于10.        

考點:導數(shù)的應用

點評:導數(shù)常應用于求曲線的切線方程、求函數(shù)的最值與單調區(qū)間、證明不等式和解不等式中參數(shù)的取值范圍等。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)a滿足1<a≤2,設函數(shù)f (x)=
1
3
x3-
a+1
2
x2+ax.
(Ⅰ) 當a=2時,求f (x)的極小值;
(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x (b∈R) 的極小值點與f (x)的極小值點相同,求證:g(x)的極大值小于等于10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

9、已知實數(shù)a滿足1<a<2,命題p:函數(shù)y=loga(2-ax)在[0,1]上是減函數(shù),命題q:“|x|<1”是“x<a”的充分不必要條件,則下面說法正確的是

①p或q為真命題;②p且q為假命題;③非p且q為真命題;④非p或非q為真命題、

查看答案和解析>>

科目:高中數(shù)學 來源:西安中學2007年高考理科數(shù)學模擬試題 題型:013

已知實數(shù)a滿足1<a<2命題P:函數(shù)y=loga(2-ax)在區(qū)間[0,1]上是減函數(shù).

命題Q:|x|<1是x<a的充分不必要條件.則

[  ]

A.P且Q”為真命題;

B.“P且Q”為假命題;

C.“P或Q”為真命題;

D.P或Q”為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知實數(shù)a滿足1<a<2,命題p:函數(shù)y=loga(2-ax)在[0,1]上是減函數(shù),命題q:“|x|<1”是“x<a”的充分不必要條件,則下面說法正確的是 ________.
①p或q為真命題;②p且q為假命題;③非p且q為真命題;④非p或非q為真命題、

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學(理科)一輪復習講義:1.3 簡單的邏輯聯(lián)結詞、全稱量詞與存在量詞(解析版) 題型:解答題

已知實數(shù)a滿足1<a<2,命題p:函數(shù)y=loga(2-ax)在[0,1]上是減函數(shù),命題q:“|x|<1”是“x<a”的充分不必要條件,則下面說法正確的是    
①p或q為真命題;②p且q為假命題;③非p且q為真命題;④非p或非q為真命題、

查看答案和解析>>

同步練習冊答案