分析 (1)利用一元二次不等式的解法即可求出;(2)通過對x 分x≥8、4≤x<8、x<4討論去掉絕對值符號即可得出.
解答 解:(1)∵-x2+4x+5<0,
∴x2-4x-5>0,
∴(x-5)(x+1)>0,
∴x<-1,或x>5,
∴原不等式的解集為{x|x<-1或x>5}.
(2)當x≥8時,不等式化為(x-8)-(x-4)>2,化為6<0,
此時不等式的解集為空集∅;
當4≤x<8時,不等式化為(8-x)-(x-4)>2,化為x<5,
此時不等式的解集{x|4≤x<5};
當x<4時,不等式化為(8-x)-(4-x)>2,化為2>0,
此時不等式的解集{x|x<4}.
綜上可知:原不等式的解集為{x|x<5}.
故答案為{x|x<5}.
點評 本題考查了含絕對值類型的不等式的解法,其中分類討論去掉絕對值符號是解題的關(guān)鍵,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | k≤-1或k≥1 | B. | -1≤k≤1 | C. | -$\sqrt{2}$<k<$\sqrt{2}$ | D. | -1<k<1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1<b<2 | B. | $\sqrt{2}$≤b<2 | C. | $\sqrt{2}$≤b≤2 | D. | -2≤b≤2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com