【題目】對任意實數(shù),給出下列命題:①的充要條件;②是無理數(shù)是無理數(shù)的充要條件;③的充分條件;④的必要條件;其中真命題的個數(shù)是(

A.1B.2C.3D.4

【答案】B

【解析】

利用等式與不等式的性質(zhì)逐一驗證命題的真假即可

①“,但當,”無法推出“,的充分不必要條件,故①是假命題;

是無理數(shù)是無理數(shù)”,是無理數(shù)是無理數(shù)”,是無理數(shù)是無理數(shù)的充要條件,故②是真命題;

③當時,,即無法推出”,且當時,,即無法推出”,的既不充分也不必要條件,故③是假命題;

④因為,所以的必要條件,故④是真命題;

綜上,真命題有2,

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】

已知曲線上的點到點的距離比它到直線的距離小2.

1)求曲線的方程;

2)曲線在點處的切線軸交于點.直線分別與直線軸交于點,以為直徑作圓,過點作圓的切線,切點為,試探究:當點在曲線上運動(點與原點不重合)時,線段的長度是否發(fā)生變化?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1),等腰梯形,,,分別是的兩個三等分點.若把等腰梯形沿虛線、折起,使得點和點重合,記為點,如圖(2).

(Ⅰ)求證:平面平面;

(Ⅱ)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,點在橢圓上,且滿足

(1)求橢圓的方程;

(2)設傾斜角為的直線交于,兩點,記的面積為,求取最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】端午節(jié)吃粽子是我國的傳統(tǒng)習俗,設一盤中裝有10個粽子,其中豆沙粽子3個,肉粽子2個,白粽子5個,這三種粽子的外觀完全相同,從中任意選取3個.

1)求三種粽子各取到1個的概率;

2)設ξ表示取到的豆沙粽子個數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)

1)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;

2)是否存在常數(shù),當時,的值域為區(qū)間,且區(qū)間的長度為(視區(qū)間的長度為),如果存在,求出的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓上一點關于原點的對稱點為點,為其右焦點,若,設,且,則該橢圓離心率的取值范圍為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率;先由計算器給出09之間取整數(shù)值的隨機數(shù),指定0、1、2表示沒有擊中目標,3、4、56、7、89表示擊中目標,以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20隨機數(shù):

根據(jù)以上數(shù)據(jù)估計該射擊運動員射擊4次至少擊中3次的概率為(

A.0.55B.0.6C.0.65D.0.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且時,.

)求的值;

)求函數(shù)的值域

)設函數(shù)的定義域為集合,若,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案