(本題滿分12分)
已知橢圓的中心在原點,焦點在坐標(biāo)軸上,直線與該橢圓相交于,且,,求橢圓的方程.

,或。

解析試題分析:設(shè)所求橢圓的方程為,
根據(jù)OP⊥OQ,據(jù)此可得到一個m,n的方程,再根據(jù)弦長公式根據(jù),得到m,n的另一個方程.然后解方程組可求出橢圓的方程.
設(shè)所求橢圓的方程為,
依題意,點P()、Q()的坐標(biāo)滿足方程組
解之并整理
…………………………………2分;
所以:,        ①………………3分;
由OP⊥OQ
          ②…………6分;

|PQ|==
==  ③………………9分;
由①②③可得
………………11分;
故所求橢圓方程為,或………………12分..
考點:直線與橢圓的位置關(guān)系,弦長公式.
點評:本小題從方程的角度來考慮設(shè)出橢圓的方程,根據(jù),建立關(guān)于兩個關(guān)于m,n的兩個方程求出m,n從而得到橢圓的方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題10分)雙曲線的離心率等于4,且與橢圓有相同的焦點,求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經(jīng)過點,又知直線與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若,求實數(shù)k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知半徑為6的圓軸相切,圓心在直線上且在第二象限,直線過點
(Ⅰ)求圓的方程;
(Ⅱ)若直線與圓相交于兩點且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題14分)已知橢圓的離心率為,以原點為圓心,橢圓短半軸長為半徑的圓與直線相切,分別是橢圓的左右兩個頂點,為橢圓上的動點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若均不重合,設(shè)直線的斜率分別為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓上的任意一點到它的兩個焦點, 的距離之和為,且其焦距為
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓交于不同的兩點A,B.問是否存在以A,B為直徑
的圓 過橢圓的右焦點.若存在,求出的值;不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓)的短軸長與焦距相等,且過定點,傾斜角為的直線交橢圓兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)確定直線軸上截距的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,點在橢圓上。
(1)求橢圓的離心率;
(2)若橢圓的短半軸長為,直線與橢圓交于A、B,且線段AB以M(1,1)為中點,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)如圖,已知橢圓(a>b>0)的離心率,過點 和的直線與原點的距離為

(1)求橢圓的方程;
(2)已知定點,若直線與橢圓交于、兩   點.問:是否存在的值,
使以為直徑的圓過點?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案