集合A={x∈R|x=a+b,a、b∈Z},判斷下列元素x與集合A的關(guān)系:

(1)x = 0;

(2)

(3);

(4)x1A,x2A,x=x1+x2;

(5)x1A,x2Ax=x1x2?;

(6)試求滿足0<a+b<1的A中元素的個(gè)數(shù)(a、b∈Z).

解析:(1)0=0+0×3,∴0∈A.?

(2) =2-=2+(-1)×,?

∈A.?

(3),∵不是整數(shù),?

A.?

(4)x 1∈A,可設(shè)x 1=a1+3b1,a1、b1∈Z,同理,x 2=a2+3b2,a2、b2∈Z,?

x= x 1+x 2=a1+a2+3(b1+b2).?

a1+a2∈Z且b1+b2∈Z,∴x∈A.?

(5)同上x=x 1x 2=a1a2+3b1b2+3(a1b2+a2b1),?

a1a2+3b1b2∈Z,(a1b2+a2b1)∈Z,?

x∈A.?

(6)由0<a+b<1-b<a<-b+1,若b=0,A為空集;?

若b≠0,在相差為1的兩個(gè)無理數(shù)之間恰有一個(gè)整數(shù),此時(shí)A中滿足條件的元素恰有一個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃州區(qū)模擬)已知集合A={x∈R|
x+1
2x-1
≤2},集合B={a∈R|已知函數(shù)f(x)=
a
x
-1+lnx,?x0>0,使f(x0)≤0成立},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x∈R|X-1>0},集合B={x∈R|y=
x
},則A∩B=( 。
A、{x|x≥0}
B、{x|0≤x≤1}
C、{x|x>1}
D、{x|x≤0 x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

集合A={x∈R|X-1>0},集合B={x∈R|y=數(shù)學(xué)公式},則A∩B=


  1. A.
    {x|x≥0}
  2. B.
    {x|0≤x≤1}
  3. C.
    {x|x>1}
  4. D.
    {x|x≤0 x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年寧夏銀川一中高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:選擇題

已知集合A={x∈R||x|<2},B={x∈R|<2x<5},則A∩B=( )
A.{x∈R|-1<x<2}
B.{x∈R|-2<x<2}
C.{x∈R|-2<x<log25}
D.{x∈R|-1<x<log25}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省菏澤市鄄城一中高三模擬沖刺數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知集合A={x∈R||x|<2},B={x∈R|<2x<5},則A∩B=( )
A.{x∈R|-1<x<2}
B.{x∈R|-2<x<2}
C.{x∈R|-2<x<log25}
D.{x∈R|-1<x<log25}

查看答案和解析>>

同步練習(xí)冊(cè)答案