已知函數(shù)f(x)=
1
3
x3+
a-2
2
x2-2ax-3.
(Ⅰ)當a=1時,求函數(shù)f(x)在[-2,0]上的最小值;
(Ⅱ)求f(x)的單調(diào)增區(qū)間.
分析:(Ⅰ)當a=1時f′(x)=x2-x-2=(x+1)(x-2)令f′(x)>0,得(x+1)(x-2)>0,解得x<-1或x>2.可以判斷f(x)在(-∞,-1)上為增函數(shù).在(-1,2)上為減函數(shù).在(2,+∝)上為增函數(shù),f(-2)=-
8
3
-2+4-3,f(0)=-3,有f(-2)<f(0).
(Ⅱ)f′(x)=x2+(a-2)x-2a=(x+a)(x-2)令f′(x)>0,即(x+a)(x-2)>0.-a>2時,即a<-2,不等式①的解為x<2或x>-a,當-a<2時,即a>-2,不等式①的解為x<-a或x>2,當-a=2時,即a=-2,不等式①的解為x∈R,且x≠2,由f(x)在x=2處連續(xù)所以f(x)的單調(diào)增區(qū)間是實數(shù)集R.根據(jù)導數(shù)的意義可以判斷函數(shù)的單調(diào)性.
解答:解:
(Ⅰ)a=1時,函數(shù)解析式為f(x)= 
1
3
x3-
1
2
x2- 2x-3
其定義域為R.
f′(x)=x2-x-2=(x+1)(x-2)
令f′(x)>0,得(x+1)(x-2)>0,解得x<-1或x>2.
同樣,令f′(x)<0,得(x+1)(x-2)<0,解得-1<x<2.
所以f(x)在(-∞,-1)上為增函數(shù).在(-1,2)上為減函數(shù).在(2,+∝)上為增函數(shù).
故f(x)在[-2,0]上的最小值是f(-2)與f(0)中的較小者.
f(-2)=-
8
3
-2+4-3,f(0)=-3,有f(-2)<f(0).
所以f(x)在[-2,0]上的最小值為f(-2)=-
11
3

(Ⅱ)f′(x)=x2+(a-2)x-2a=(x+a)(x-2)
令f′(x)>0,即(x+a)(x-2)>0.                         ①
當-a>2時,即a<-2,不等式①的解為x<2或x>-a,
所以f(x)的單調(diào)增區(qū)間是(-∞,2)和(-a,+∝);
當-a<2時,即a>-2,不等式①的解為x<-a或x>2,
所以f(x)的單調(diào)增區(qū)間是(-∝,-a)和(2,+∞);
當-a=2時,即a=-2,不等式①的解為x∈R,且x≠2,由f(x)在x=2處連續(xù)所以f(x)的單調(diào)增區(qū)間是實數(shù)集R.
綜上:
(1)當a<-2時,f(x)的單調(diào)增區(qū)間是(-∞,2)和(-a,+∞);
(2)當a>-2時,f(x)的單調(diào)增區(qū)間是(-∞,-a)和(2,+∞);
(3)當a=-2時,f(x)在實數(shù)集R上的單調(diào)遞增.
點評:本小題主要考查導數(shù)的計算,應用導數(shù)研究函數(shù)的單調(diào)性,不等式的證明等,考查綜合運用數(shù)學知識解決問題的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實數(shù)x的取值范圍是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(2)當a=1時,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當a=1時,求證對任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是( 。

查看答案和解析>>

同步練習冊答案