已知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點(diǎn)的軌跡是拋物線,并求出其方程;
(2)我們知道:“過(guò)圓上任意一點(diǎn)P,任意作互相垂直的弦PA、PB,則弦AB必過(guò)圓心”(定點(diǎn)).受此啟發(fā),研究下面問(wèn)題:
對(duì)于拋物線y2=2px(p>0)上某一定點(diǎn)P(非頂點(diǎn)),過(guò)P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過(guò)定點(diǎn)?
分析:(1)利用拋物線的定義即可得出點(diǎn)M的軌跡方程;
(2)設(shè)P(
y02
2p
,  y0),A(
y12
2p
,  y1),  B(
y22
2p
,  y2)
,由PA⊥PB,可得
PA
PB
=0,得到關(guān)于y1,y2,y0的一個(gè)關(guān)系式(*),利用點(diǎn)斜式可得到直線AB的方程,把(*)代入即可得到直線AB過(guò)一個(gè)定點(diǎn).
解答:證明:(1)設(shè)M(x,y)到定直線x=-2的距離為d,
若x≤-2,則|MF|>d,不符題意,所以點(diǎn)M在直線x=-2的右側(cè).
于是動(dòng)點(diǎn)M到定點(diǎn)F (1,0)的距離與到定直線x=-1的距離相等,
所以M點(diǎn)的軌跡是拋物線,其方程為y2=4x.
(2)設(shè)P(
y02
2p
,  y0),A(
y12
2p
,  y1),  B(
y22
2p
,  y2)
,
PA
=(
(y1+y0)(y1-y0)
2p
,  y1-y0)
,
PB
=(
(y2+y0)(y2-y0)
2p
,  y2-y0)
,
因?yàn)镻A⊥PB,所以
PA
PB
=(y1-y0)(y2-y0)(
(y1+y0)(y2+y0)
4p2
+1)=0
,
因?yàn)椋▂1-y0)(y2-y0)≠0,所以
(y1+y0)(y2+y0)
4p2
+1=0
,
-y1y2=(y1+y2)y0+y02+4p2①.
直線AB的方程為x-
y12
2p
=
 
y12
2p
-
y22
2p
 
y1-y2
(y-y1)

x-
y12
2p
=
y1+y2
2p
(y-y1)
,x-
y12
2p
=
y1+y2
2p
y-
y12+y1y2
2p
,x=
y1+y2
2p
y+
-y1y2
2p
,
把①代入得:x=
y1+y2
2p
y+
(y1+y2)y0+y02+4p2
2p
,化簡(jiǎn)得x-(
y02+4p2
2p
)=
y1+y2
2p
(y+y0)
,
故直線AB恒過(guò)定點(diǎn)(
y02+4p2
2p
,  -y0)
點(diǎn)評(píng):本小題主要考查拋物線的定義及其性質(zhì)、直線過(guò)定點(diǎn)問(wèn)題、如何設(shè)拋物線上的點(diǎn)坐標(biāo)、直線的點(diǎn)斜式等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合、方程思想、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及推理論證能力、運(yùn)算求解能力、創(chuàng)新探究意識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離與到定直線l:x=-1的距離相等,點(diǎn)C在直線l上.
(1)求動(dòng)點(diǎn)M的軌跡方程;
(2)設(shè)過(guò)定點(diǎn)F,法向量
n
=(4,-3)
的直線與(1)中的軌跡相交于A,B兩點(diǎn),判斷∠ACB能否為鈍角并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離與到定直線l:x=-1的距離相等,點(diǎn)C在直線l上.
(1)求動(dòng)點(diǎn)M的軌跡方程;
(2)設(shè)過(guò)定點(diǎn)F,法向量
n
=(4,-3)
的直線與(1)中的軌跡相交于A,B兩點(diǎn)且點(diǎn)A在x軸的上方,判斷∠ACB能否為鈍角并說(shuō)明理由.進(jìn)一步研究∠ABC為鈍角時(shí)點(diǎn)C縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點(diǎn)的軌跡是拋物線,并求出其方程;
(2)大家知道,過(guò)圓上任意一點(diǎn)P,任意作互相垂直的弦PA、PB,則弦AB必過(guò)圓心(定點(diǎn)).受此啟發(fā),研究下面問(wèn)題:
1過(guò)(1)中的拋物線的頂點(diǎn)O任意作互相垂直的弦OA、OB,問(wèn):弦AB是否經(jīng)過(guò)一個(gè)定點(diǎn)?若經(jīng)過(guò),請(qǐng)求出定點(diǎn)坐標(biāo),否則說(shuō)明理由;2研究:對(duì)于拋物線上某一定點(diǎn)P(非頂點(diǎn)),過(guò)P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過(guò)定點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點(diǎn)的軌跡是拋物線,并求出其方程;
(2)大家知道,過(guò)圓上任意一點(diǎn)P,任意作互相垂直的弦PA、PB,則弦AB必過(guò)圓心(定點(diǎn)).受此啟發(fā),研究下面問(wèn)題:
1過(guò)(1)中的拋物線的頂點(diǎn)O任意作互相垂直的弦OA、OB,問(wèn):弦AB是否經(jīng)過(guò)一個(gè)定點(diǎn)?若經(jīng)過(guò),請(qǐng)求出定點(diǎn)坐標(biāo),否則說(shuō)明理由;2研究:對(duì)于拋物線上某一定點(diǎn)P(非頂點(diǎn)),過(guò)P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過(guò)定點(diǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案