【題目】現(xiàn)有一個關于平面圖形的命題:如圖所示,同一平面內有兩個邊長都是a的正方形,其中一個正方形的某頂點在另一個正方形的中心,則這兩個正方形重疊部分的面積恒為,類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為__________.

A.B.C.D.

【答案】C

【解析】

根據(jù)正方形中,其中一個的某頂點在另一個的中心,則這兩個正方形重疊的部分的面積恒為,結合正方體的結構特征,即可類比推理出兩個正方體重疊部分的體積,得到答案.

由題意,因為同一個平面內有兩個邊長都是的正方形,其中一個的某頂點在另一個的中心,

則這兩個正方形重疊的部分的面積恒為

類比到空間中由兩個棱長均為的正方體,其中一個的某頂點在另一個的中心,

則這兩個正方體的重疊部分的體積為,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)當時,求函數(shù)的最大值;

(2)令,其圖象上任意一點處切線的斜率恒成立,求實數(shù)的取值范圍;

(3)當,,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)滿足:對于s,t∈[0,+∞),都有f(s)≥0,f(t)≥0,且f(s)+f(t)≤f(s+t),則稱函數(shù)f (x)“T函數(shù)”.

(I)試判斷函數(shù)f1(x)=x2f2(x)=lg(x+1)是否是“T函數(shù)”,并說明理由;

(Ⅱ)f (x)“T函數(shù)”,且存在x0∈[0,+∞),使f(f(x0))=x0.求證f (x0) =x0;

(Ⅲ)試寫出一個“T函數(shù)”f(x),滿足f(1)=1,且使集合{y|y=f(x),0≤x≤1)中元素的個數(shù)最少.(只需寫出結論

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1 (t為參數(shù),t≠0),其中0≤απ.在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2ρ2sin θ,C3ρ2cos θ.

(1)C2C3交點的直角坐標;

(2)C1C2相交于點A,C1C3相交于點B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直線與函數(shù),圖像交于異于原點不同的兩點,且點,若點滿足,則( )

A. B. 2 C. 4 D. 6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),當時,恒有時,

求證: 是奇函數(shù);

,試求在區(qū)間上的最值;

)是否存在,使對于任意恒成立?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“人機大戰(zhàn),柯潔哭了,機器贏了”,2017年5月27日,歲的世界圍棋第一人柯潔不敵人工智能系統(tǒng)AlphaGo,落淚離席.許多人認為這場比賽是人類的勝利,也有許多人持反對意見,有網友為此進行了調查.在參與調查的男性中,有人持反對意見,名女性中,有人持反對意見.再運用這些數(shù)據(jù)說明“性別”對判斷“人機大戰(zhàn)是人類的勝利”是否有關系時,應采用的統(tǒng)計方法是( )

A.分層抽樣B.回歸分析C.獨立性檢驗D.頻率分布直方圖

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中(底面△ABC為正三角形),A1A⊥平面ABC,AB=AC=2,,DBC邊的中點.

1)證明:平面ADB1⊥平面BB1C1C

2)求點B到平面ADB1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線過點.

(1)若直線與圓相切,求直線的方程;

(2)若直線與圓交于兩點,當的面積最大時,求直線的方程.

查看答案和解析>>

同步練習冊答案