如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論中正確的是
②③④
②③④

①AC∥平面CB1D1;
②AC1⊥平面CB1D1;
③AC1與底面ABCD所成角的正切值是
2
2

④AD1與BD為異面直線.
分析:由AC∩平面CB1D1=C,能判斷①不正確;由正方體的性質(zhì)和直線與平面垂直的判定定理,能判斷②正確;由線面角的求法能判斷③正確;由異面直線判定定理,能判斷④正確.
解答:解:由ABCD-A1B1C1D1為正方體,知:
①∵AC∩平面CB1D1=C,∴AC與平面CB1D1相交,故①不正確;
②由正方體的性質(zhì),得B1D1⊥A1C1,CC1⊥B1D1,故B1D1⊥平面 ACC1A1,故 B1D1⊥AC1
同理可得 B1C⊥AC1.再根據(jù)直線和平面垂直的判定定理可得,AC1⊥平面CB1D1 ,故②正確;
③AC1與底面ABCD所成角的正切值tanC1AC=
CC1
AC
=
2
2
,故③正確;
④∵AD1∩平面ABCD=A,BD?平面ABCD,A∉BD,
∴由異面直線判定理,知AD1與BD為異面直線,故④正確.
故答案為:②③④.
點(diǎn)評(píng):本題考查直線與直線、直線與平面的位置關(guān)系的判斷,解題時(shí)要認(rèn)真審題,注意異面直線的判定,直線和平面平行、垂直的判定定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,ABCD-A1B1C1D1是棱長(zhǎng)為6的正方體,E、F分別是棱AB、BC上的動(dòng)點(diǎn),且AE=BF.
(1)求證:A1F⊥C1E;
(2)當(dāng)A1、E、F、C1共面時(shí),求:
①D1到直線C1E的距離;
②面A1DE與面C1DF所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論中正確的是
①②④
①②④
.(把你認(rèn)為正確的結(jié)論都填上)
①BD∥平面CB1D1;
②AC1⊥平面CB1D1;
③AC1與底面ABCD所成角的正切值是
2
;
④二面角C-B1D1-C1的正切值是
2

⑤過(guò)點(diǎn)A1與異面直線AD與CB1成70°角的直線有2條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論中正確的結(jié)論是
①②
①②
.(把你認(rèn)為正確的結(jié)論都填上)
①BD∥平面CB1D1;
②AC1⊥平面CB1D1;
③過(guò)點(diǎn)A1與異面直線AD和CB1成90°角的直線有2條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)方體ABCD—A1B1C1D1中,點(diǎn)O是B1D1的中點(diǎn),直線A1C交平面AB1D1于點(diǎn)M,對(duì)下列結(jié)論,錯(cuò)誤的是(    )

A.A、M、O三點(diǎn)共線                      B.A、M、O、A1四點(diǎn)共面

C.A、O、C、M四點(diǎn)共面                 D.B、B1、O、M四點(diǎn)共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省江門市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,ABCD-A1B1C1D1是棱長(zhǎng)為6的正方體,E、F分別是棱AB、BC上的動(dòng)點(diǎn),且AE=BF.
(1)求證:A1F⊥C1E;
(2)當(dāng)A1、E、F、C1共面時(shí),求:
①D1到直線C1E的距離;
②面A1DE與面C1DF所成二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案