已知函數(shù),設(shè)曲線在與軸交點(diǎn)處的切線為,的導(dǎo)函數(shù),滿足
(1)求;
(2)設(shè),,求函數(shù)上的最大值;
(3)設(shè),若對(duì)于一切,不等式恒成立,求實(shí)數(shù)的取值范圍.

(1);(2);(3)

解析試題分析:(1)三次函數(shù)的導(dǎo)數(shù)是二次函數(shù),由,知其對(duì)稱軸,曲線的切線問(wèn)題,可利用導(dǎo)數(shù)的幾何意義(切點(diǎn)處切線的斜率)列出方程組求解;(2),畫(huà)出函數(shù)圖象考察其單調(diào)性,根據(jù)其單調(diào)區(qū)間對(duì)的值分類討論求出其最大值;(3)對(duì)不等式進(jìn)行化簡(jiǎn),得恒成立,即,且,對(duì)任意的成立,然后又轉(zhuǎn)化為求函數(shù)的最值問(wèn)題,要注意,從而有.
試題解析:(1),∵,
∴函數(shù)的圖象關(guān)于直線對(duì)稱,,             2分
∵曲線在與軸交點(diǎn)處的切線為,∴切點(diǎn)為,
,解得,則                5分
(2)∵
,其圖象如圖                      7分
當(dāng)時(shí),,
當(dāng)時(shí),,
當(dāng)時(shí),,

綜上                                  10分
(3),
當(dāng)時(shí),,所以不等式等價(jià)于恒成立,
解得,且,                                            13分
,得,,所以
,∵,∴所求的實(shí)數(shù)的的取值范圍是       16分
考點(diǎn):函數(shù)與導(dǎo)數(shù)、曲線的切線、不等式恒成立問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),的圖象經(jīng)過(guò)兩點(diǎn),如圖所示,且函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8a/a/h4jou.png" style="vertical-align:middle;" />.過(guò)該函數(shù)圖象上的動(dòng)點(diǎn)軸的垂線,垂足為,連接.

(I)求函數(shù)的解析式;
(Ⅱ)記的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) .
(1)若 的極小值為1,求a的值.
(2)若對(duì)任意 ,都有 成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)f(x)=+ax-lnx(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a≥2時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對(duì)任意及任意∈[1,2],恒有成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)為正常數(shù).
(Ⅰ)若,且,求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)若,且對(duì)任意都有,求的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍,并且判斷代數(shù)式的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(1)若時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;
(3)令是否存在實(shí)數(shù),當(dāng)是自然對(duì)數(shù)的底)時(shí),函數(shù)的最小值是3,
若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)(其中).
(1) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(2) 當(dāng)時(shí),函數(shù)上有且只有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),e=2.718…,且函數(shù)y=f(x)和y=g(x)的圖像在它們與坐標(biāo)軸交點(diǎn)處的切線互相平行.
(1)求常數(shù)a的值;(2)若存在x使不等式>成立,求實(shí)數(shù)m的取值范圍;
(3)對(duì)于函數(shù)y=f(x)和y=g(x)公共定義域內(nèi)的任意實(shí)數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.

查看答案和解析>>

同步練習(xí)冊(cè)答案