【題目】已知四棱錐中,底面,,,,是中點.
(1)求證:平面;
(2)求直線和平面所成角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C: + =1(a>b>0)的左、右焦點分別為F1 , F2 , 點P(3,1)在橢圓上,△PF1F2的面積為2 .
(1)①求橢圓C的標準方程; ②若∠F1QF2= ,求QF1QF2的值.
(2)直線y=x+k與橢圓C相交于A,B兩點,若以AB為直徑的圓經(jīng)過坐標原點,求實數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】兩條平行直線和圓的位置關系定義為:若兩條平行直線和圓有四個不同的公共點,則稱兩條平行線和圓“相交”;若兩平行直線和圓沒有公共點,則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個、兩個或三個不同的公共點,則稱兩條平行線和圓“相切”.已知直線,,和圓:相切,則實數(shù)的取值范圍是( )
A. 或B. 或
C. 或D. 或
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某學段1000名學生的百米成績情況,隨機抽取了若干學生的百米成績,成績?nèi)拷橛?3秒與18秒之間,將成績按如下方式分成五組:第一組[13,14);第二組[14,15);…;第五組[17,18].按上述分組方法得到的頻率分布直方圖如右圖所示,已知圖中從左到右的前3個組的頻率之比為3:8:19,且第二組的頻數(shù)為8.
(1)將頻率當作概率,請估計該學段學生中百米成績在[16,17)內(nèi)的人數(shù)以及所有抽取學生的百米成績的中位數(shù)(精確到0.01秒);
(2)若從第一、五組中隨機取出兩個成績,求這兩個成績的差的絕對值大于1秒的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某人用一網(wǎng)箱飼養(yǎng)中華鱘,研究表明:一個飼養(yǎng)周期,該網(wǎng)箱中華鱘的產(chǎn)量(單位:百千克)與購買飼料費用()(單位:百元)滿足:.另外,飼養(yǎng)過程中還需投入其它費用.若中華鱘的市場價格為元/千克,全部售完后,獲得利潤元.
(1)求關于的函數(shù)關系式;
(2)當為何值時,利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正四棱柱ABCD﹣A1B1C1D1中,AB= ,AA1=2,設四棱柱的外接球的球心為O,動點P在正方形ABCD的邊上,射線OP交球O的表面于點M,現(xiàn)點P從點A出發(fā),沿著A→B→C→D→A運動一次,則點M經(jīng)過的路徑長為( )
A.
B.2 π
C.
D.4 π
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,已知a1>1,an+1=an2﹣an+1(n∈N*),且 +…+ =2.則當a2016﹣4a1取得最小值時,a1的值為= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市地產(chǎn)數(shù)據(jù)研究所的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如圖所示,3月至7月房價上漲過快,政府從8月采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.
(1)地產(chǎn)數(shù)據(jù)研究所發(fā)現(xiàn),3月至7月的各月均價(萬元/平方米)與月份之間具有較強的線性相關關系,試求關于的回歸直線方程;
(2)若政府不調(diào)控,按照3月份至7月份房價的變化趨勢預測12月份該市新建住宅的銷售均價.
參考數(shù)據(jù):,,;
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com