【題目】如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為,一雙曲線的頂點是該橢圓的焦點,且它的實軸長等于虛軸長,設為該雙曲線上異于頂點的任一點,直線與橢圓的交點分別為,其中軸的同一側.

(1)求橢圓和雙曲線的標準方程;

(2)是否存在題設中的點,使得?若存在, 求出點的坐標;若不存在,請說明理由.

【答案】(1)(2)

【解析】試題分析:(1)由橢圓定義可得 ,再結合離心率為 ,解出,,由雙曲線的頂點是該橢圓的焦點,得,再根據(jù)實軸長等于虛軸長得(2)設P點坐標,利用點斜式表示直線AB,CD方程,利用韋達定理及弦長公式求;根據(jù)橢圓性質(zhì)確定直線AB,CD斜率關系,根據(jù)焦點三角形求向量夾角,綜合條件可解得P點坐標

試題解析:解:(1)由題意知,橢圓離心率為 ,得,又 ,所以可解得, ,所以,所以橢圓的標準方程為;所以橢圓的焦點坐標為(,0),因為雙曲線為等軸雙曲線,且頂點是該橢圓的焦點,所以該雙曲線的標準方程為

(2)設,則,在雙曲線上,,設 方程為

的方程為,設,則

,

同理,, 由題知,

,.

,

,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=x2-2ax+5

1)若fx)的定義域和值域均是[1,a],求實數(shù)a的值;

2)若a≤1,求函數(shù)y=|fx|[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“劍橋?qū)W派”創(chuàng)始人之一數(shù)學家哈代說過:“數(shù)學家的造型,同畫家和詩人一樣,也應當是美麗的”;古希臘數(shù)學家畢達哥拉斯創(chuàng)造的“黃金分割”給我們的生活處處帶來美;我國古代數(shù)學家趙爽創(chuàng)造了優(yōu)美“弦圖”.“弦圖”是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,則等于(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知,B為AC的中點,分別以AB,AC為直徑在AC的同側作半圓,M,N分別為兩半圓上的動點不含端點A,B,,且,則的最大值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

以平面直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,已知點的直角坐標為,若直線的極坐標方程為,曲線的參數(shù)方程是,(為參數(shù)).

(1)求直線的直角坐標方程和曲線的普通方程;

(2)設直線與曲線交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=,設bn=,n∈N*。

(1)證明{bn}是等比數(shù)列(指出首項和公比);

(2)求數(shù)列{log2bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201911日起我國實施了個人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)=收入-個稅起征點-專項附加扣除;(3)專項附加扣除包括:①贍養(yǎng)老人費用,②子女教育費用,③繼續(xù)教育費用,④大病醫(yī)療費用等,其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除2000元,②子女教育費用:每個子女每月扣除1000元,新的個稅政策的稅率表部分內(nèi)容如下:

級數(shù)

一級

二級

三級

每月應納稅所得額元(含稅)

稅率

3

10

20

現(xiàn)有李某月收入為18000元,膝下有一名子女在讀高三,需贍養(yǎng)老人,除此之外無其它專項附加扣除,則他該月應交納的個稅金額為(

A.1800B.1000C.790D.560

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目.若一名學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.例如,學生甲選擇“物理、化學和生物”三個選考科目,則學生甲的選考方案確定,“物理、化學和生物”為其選考方案.

某學校為了了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:

性別

選考方案確定情況

物理

化學

生物

歷史

地理

政治

男生

選考方案確定的有6人

6

6

3

1

2

0

選考方案待確定的有8人

5

4

0

1

2

1

女生

選考方案確定的有10人

8

9

6

3

3

1

選考方案待確定的有6人

5

4

0

0

1

1

(Ⅰ)試估計該學校高一年級確定選考生物的學生有多少人?

(Ⅱ)寫出選考方案確定的男生中選擇“物理、化學和地理”的人數(shù).(直接寫出結果)

(Ⅲ)從選考方案確定的男生中任選2名,試求出這2名學生選考科目完全相同的概率.

查看答案和解析>>

同步練習冊答案