【題目】已知點Mx,y)滿足

1)求點M的軌跡E的方程;

2)設過點N(﹣10)的直線l與曲線E交于A,B兩點,若OAB的面積為O為坐標原點).求直線l的方程.

【答案】(1)(2)

【解析】

1)根據(jù)幾何意義可知,點滿足動點到定點的距離和為,且,所以點滿足橢圓的定義,寫出軌跡方程;(2)首先分直線軸垂直和軸不垂直兩種情況討論,當斜率存在時,與橢圓方程聯(lián)立,設交點,,根據(jù)條件可知 ,即,利用根與系數(shù)的關系求,即得直線的方程.

解:(1)由已知,動點到點,的距離之和為

,所以動點的軌跡為橢圓.,,所以,

所以動點的軌跡的方程為.

2)當直線軸垂直時,,此時,

,不滿足條件.

當直線軸不垂直時,設直線的方程為,

,

所以,.

.

所以,則,所以,

所以直線的方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】旅行社為某旅行團包飛機去旅游,其中旅行社的包機費為15000元.旅游團中的每人的飛機票按以下方式與旅行社結算:若旅游團的人數(shù)不超過35人時,飛機票每張收費800元;若旅游團的人數(shù)多于35人,則給予優(yōu)惠,每多1人,機票費每張減少10元,但旅游團的人數(shù)最多有60人.設旅行團的人數(shù)為人,飛機票價格為元,旅行社的利潤為元.

(1)寫出飛機票價格元與旅行團人數(shù)之間的函數(shù)關系式;

(2)當旅游團的人數(shù)為多少時,旅行社可獲得最大利潤?求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題:

①函數(shù)的最大值為1;

“若,則”的逆命題為真命題;

③若為銳角三角形,則有

④“”是“函數(shù)在區(qū)間內單調遞增”的充分必要條件.

其中所有正確命題的序號為____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某生產企業(yè)研發(fā)了一種新產品,該新產品在某網(wǎng)店試銷一個階段后得到銷售單價和月銷售量之間的一組數(shù)據(jù),如下表所示:

銷售單價(元)

9

9.5

10

10.5

11

月銷售量(萬件)

11

10

8

6

5

(I)根據(jù)統(tǒng)計數(shù)據(jù),求出關于的回歸直線方程,并預測月銷售量不低于12萬件時銷售單價的最大值;

(II)生產企業(yè)與網(wǎng)店約定:若該新產品的月銷售量不低于10萬件,則生產企業(yè)獎勵網(wǎng)店1萬元;若月銷售量不低于8萬件且不足10萬件,則生產企業(yè)獎勵網(wǎng)店5000元;若月銷售量低于8萬件,則沒有獎勵. 現(xiàn)用樣本估計總體,從上述5個銷售單價中任選2個銷售單價,求抽到的產品含有月銷售量不低于10萬件的概率.

參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為. 參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)當時,求不等式的解集;

2)若不等式的解集包含[–1,1],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計該企業(yè)的職工對該部門評分不低于80的概率;

3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是奇函數(shù)(.

1)求實數(shù)的值;

2)試判斷函數(shù)上的單調性,并證明你的結論;

3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù).

1)討論函數(shù)的單調性;

2)若,且時有極大值點,求證:.

查看答案和解析>>

同步練習冊答案